This is mostly extracted from http://reviews.llvm.org/D18960.
The general idea for tlsdesc is that the two GD got entries are used
for a function pointer and its argument. The dynamic linker sets
both. In the non-dlopen case the dynamic linker sets the function to
the identity and the argument to the offset in the tls block.
All that the static linker has to do in the non-dlopen case is
relocate the code to point to the got entries and create a dynamic
relocation.
The dlopen case is more complicated, but can be implemented in another patch.
llvm-svn: 271569
Patch implements next relaxation from latest ABI:
"Convert memory operand of test and binop into immediate operand, where binop is one of adc, add, and, cmp, or,
sbb, sub, xor instructions, when position-independent code is disabled."
It is described in System V Application Binary Interface AMD64 Architecture Processor
Supplement Draft Version 0.99.8 (https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-r249.pdf,
B.2 "B.2 Optimize GOTPCRELX Relocations").
Differential revision: http://reviews.llvm.org/D20793
llvm-svn: 271405
When we undefine, we also preserve type of symbol so that we get
it right in the combined LTO object.
Differential Revision: http://reviews.llvm.org/D20851
llvm-svn: 271403
In case of MIPS, GP-relative relocations always resolve to a definition
in a regular input file, ignoring the one-definition rule. Such
relocations are used to setup GP relative offsets in a function's
prologue. So we, for example, should not attempt to create a dynamic
relocation even if the target symbol is preemptible.
Fixes bug 27880.
Differential Revision: http://reviews.llvm.org/D20664
llvm-svn: 271100
MIPS .reginfo and .MIPS.options sections are consumed by the linker, and
the linker produces a single output section. But it is possible that
input files contain section symbol points to the corresponding input
section. In case of generation a relocatable output we need to write
such symbols to the output file.
Fixes bug 27878.
Differential Revision: http://reviews.llvm.org/D20688
llvm-svn: 270910
D15779 introduced basic approach to support new relaxations.
This patch implements relaxations for jmp and call instructions,
described in System V Application Binary Interface AMD64 Architecture Processor
Supplement Draft Version 0.99.8 (https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-r249.pdf,
B.2 "B.2 Optimize GOTPCRELX Relocations")
Differential revision: http://reviews.llvm.org/D20622
llvm-svn: 270721
Add another possible error that may be reported for the same case. The
original reproduction case that prompted r270706 produced the error
"corrupted CIE" instead of "corrupted or unsupported CIE information".
The specific error depends on arbitrary data later in the file so
check that neither is emitted in case the input is ever changed.
Document the process used to create the input .o and rename the test
file to .s, as requested by Rafael.
llvm-svn: 270709
"A zero length string indicates that no augmentation data is present."
The FreeBSD/mips toolchain (GCC 4.2.1) generates .debug_frame sections
containing CIE records that have an empty augmentation string.
Differential Revision: http://reviews.llvm.org/D19928
llvm-svn: 270706
System V Application Binary Interface AMD64 Architecture Processor Supplement Draft Version 0.99.8
(https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-r249.pdf, B.2 "B.2 Optimize GOTPCRELX Relocations")
introduces possible relaxations for R_X86_64_GOTPCRELX and R_X86_64_REX_GOTPCRELX.
That patch implements the next relaxation:
mov foo@GOTPCREL(%rip), %reg => lea foo(%rip), %reg
and also opens door for implementing all other ones.
Implementation was suggested by Rafael Ávila de Espíndola with few additions and testcases by myself.
Differential revision: http://reviews.llvm.org/D15779
llvm-svn: 270705
Previously, we created a .bss section when needed. We had a function
ensureBss() for that purpose. Turned out that was error-prone
because it was easy to forget to call that function before accessing
the .bss section.
This patch always make the BSS section. The section is added to the
output when it's not empty.
llvm-svn: 270527
Copy relocations are relocations to copy data from DSOs to
executable's .bss segment at runtime. It doesn't make sense to
create such relocations for zero-sized symbols.
GNU linkers don't agree with each other. ld rejects such
relocation/symbol pair. gold don't reject that but do not create
copy relocations as well. I took the former approach because
I don't think the latter is what user wants.
llvm-svn: 270525
Previously, EhFrameHdr section computed addresses to which FDEs are
applied to. This is not an ideal design because EhFrameHdr does not
know much about FDEs unless EhFrame passes the information to EhFrameHdr.
It is what we did.
This patch simplifies the code by making EhFrame to compute the
values and pass the cooked information to EhFrameHdr. EhFrameHdr no
longer have to know about the details of FDEs such as FDE encodings.
llvm-svn: 270393
This patch refactors EHOutputSection using SectionPiece struct.
EHRegion class was removed since we can now directly use SectionPiece.
An incomplete support of large CIE/FDE record (> 2^32 bytes) was removed
because it silently created broken executable. There are several places
in the existing code that "size" field is always 4 bytes and at offset 4
in the record, which is not true for 64-bit size records. We will have to
support that in future, but it is better to error out instead of creating
malformed eh_frame sections.
llvm-svn: 270382
the linker script. The cycle in the ELF/LinkerScript.cpp:assignAddresses()
routine will be used to go through all the sections and set all the
addresses correctly.
Add new test to check this case.
llvm-svn: 270090
Lazy binding is quite important for use case like a shared build of
llvm. Also, if someone wants to disable it, it is better done in the
compiler (disable plt generation).
The only reason to keep it is to make it easier to add a new
architecture. But it doesn't really help much as it is possible to start
with non lazy relocation and plt code but still let the generic part
create a dedicated .got.plt and .rela.plt.
llvm-svn: 269982
If you specify the option in the form of --build-id=0x<hexstring>,
that hexstring is set as a build ID. We observed that the feature
is actually in use in some builds, so we want this feature.
llvm-svn: 269495
The Elf_Rela has an explicit addend. It doesn't need the addend to be
written to the section being relocated.
Since relative relocations are very common in the output, this is a
noticeable speedup. The results I got were
chromium
master 4.778149487
patch 4.761120792 0.996436131802
chromium fast
master 1.896253636
patch 1.840990582 0.970856718241
the gold plugin
master 0.399337811
patch 0.392279276 0.982324401032
clang
master 0.666873675
patch 0.665895708 0.998533504865
llvm-as
master 0.037101095
patch 0.037123149 1.00059442989
the gold plugin fsds
master 0.422473396
patch 0.414192879 0.980399909016
clang fsds
master 0.747302008
patch 0.744843964 0.996710775599
llvm-as fsds
master 0.033146245
patch 0.033064531 0.997534743377
scylla
master 4.08857525
patch 4.082245184 0.998451767275
llvm-svn: 269417
Just do not allow to link shared library if there are
undefined symbols.
This fixes PR27447
Differential revision: http://reviews.llvm.org/D20169
llvm-svn: 269183
This is the option which sorts relocs to optimize dynamic linker performance.
-z combelocs is the default in gold, also it ignores -z nocombreloc,
this patch do the same.
Patch sorts relocations by symbols only and do not create any
DT_REL[A]COUNT entries. That is different with what gold/bfd do.
More information about option is here:
http://www.airs.com/blog/archives/186http://people.redhat.com/jakub/prelink.pdf, p.2
Differential revision: http://reviews.llvm.org/D19528
llvm-svn: 269066
MIPS N64 ABI packs multiple relocations into the single relocation
record. In general, all up to three relocations can have arbitrary types.
In fact, Clang and GCC uses only a few combinations. For now, we support
two of them. That is allow to pass at least all LLVM test suite cases.
<any relocation> / R_MIPS_SUB / R_MIPS_HI16 | R_MIPS_LO16
<any relocation> / R_MIPS_64 / R_MIPS_NONE
The first relocation is a 'real' relocation which is calculated using
the corresponding symbol's value. The second and the third relocations
used to modify result of the first one: extend it to 64-bit, extract
high or low part etc. For details, see part 2.9 'Relocation' at
https://dmz-portal.mips.com/mw/images/8/82/007-4658-001.pdf
llvm-svn: 268876
We were creating the copy relocations just fine, but then thinking that
the .bss position could be preempted and creating a dynamic relocation
to it, which would crash at runtime since that memory is read only.
llvm-svn: 268668
This allows the combined LTO object to provide a definition with the same
name as a symbol that was internalized without causing a duplicate symbol
error. This normally happens during parallel codegen which externalizes
originally-internal symbols, for example.
In order to make this work, I needed to relax the undefined symbol error to
only report an error for symbols that are used in regular objects.
Differential Revision: http://reviews.llvm.org/D19954
llvm-svn: 268649
We were previously using an output offset of -1 for both GC'd and tail
merged pieces. We need to distinguish these two cases in order to filter
GC'd symbols from the symbol table -- we were previously asserting when we
asked for the VA of a symbol pointing into a dead piece, which would end
up asking the tail merging string table for an offset even though we hadn't
initialized it properly.
This patch fixes the bug by using an offset of -1 to exclusively mean GC'd
pieces, using 0 for tail merges, and distinguishing the tail merge case from
an offset of 0 by asking the output section whether it is tail merge.
Differential Revision: http://reviews.llvm.org/D19953
llvm-svn: 268604