This function can, for some offsets from the SP, split one instruction
into two. Since it re-uses the original instruction as the first
instruction of the result, we need ensure its result register is not
marked as dead before we use it in the second instruction.
llvm-svn: 220194
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash. The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).
Original commit message follows.
--
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 219010
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString. Integers are stringified and
a `\0` character is used as a separator.
Part of PR17891.
Note: I've attached my testcases upgrade scripts to the PR. If I've
just broken your out-of-tree testcases, they might help.
llvm-svn: 218914
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.
Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.
By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.
The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)
This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.
What this patch doesn't do:
This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.
http://reviews.llvm.org/D4919
rdar://problem/17994491
Thanks to dblaikie and dexonsmith for reviewing this patch!
llvm-svn: 218778
If it's safe to clobber the condition flags, we can do a few extra things:
it's then possible to reset the base register writeback using a SUBS, so
we can try to merge even if the base register isn't dead after the merged
instruction.
This is effectively a (heavily bug-fixed) rewrite of r208992.
llvm-svn: 218386
There's no need to do this if the user doesn't call va_start. In the
future, we're going to have thunks that forward these register
parameters with musttail calls, and they won't need these spills for
handling va_start.
Most of the test suite changes are adding va_start calls to existing
tests to keep things working.
llvm-svn: 216294
There are two add-immediate instructions in Thumb1: tADDi8 and tADDi3. Only
the latter supports using different source and destination registers, so
whenever we materialize a new base register (at a certain offset) we'd do
so by moving the base register value to the new register and then adding in
place. This patch changes the code to use a single tADDi3 if the offset is
small enough to fit in 3 bits.
Differential Revision: http://reviews.llvm.org/D5006
llvm-svn: 216193
On pre-v6 hardware, 'MOV lo, lo' gives undefined results, so such copies need to
be avoided. This patch trades simplicity for implementation time at the expense
of performance... As they say: correctness first, then performance.
See http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-August/075998.html for a few
ideas on how to make this better.
llvm-svn: 216138
In a previous iteration of the pass, we would try to compensate for
writeback by updating later instructions and/or inserting a SUBS to
reset the base register if necessary.
Since such a SUBS sets the condition flags it's not generally safe to do
this. For now, only merge LDR/STRs if there is no writeback to the base
register (LDM that loads into the base register) or the base register is
killed by one of the merged instructions. These cases are clear wins
both in terms of instruction count and performance.
Also add three new test cases, and update the existing ones accordingly.
llvm-svn: 215729
expanding pseudo LOAD_STATCK_GUARD using instructions that are normally used
in pic mode. This patch fixes the bug.
<rdar://problem/17886592>
llvm-svn: 214614
When targetting Thumb1 on a processor which has a VFP unit (which
is not accessible from Thumb1), we were converting the fastcc calling
convention to AAPCS-VFP, which is not possible.
llvm-svn: 210889
Moritz's changes have improved codegen a lot, but further testing showed significant correctness problems. Disable by default until these have been worked out.
Patch by Moritz Roth!
llvm-svn: 210789
Previously, the basic block was searched for future uses of the base register,
and if necessary any writeback to the base register was reset using a SUB
instruction (e.g. before calling a function) just before such a use. However,
this step happened *before* the merged LDM/STM instruction was built. So if
there was (e.g.) a function call directly after the not-yet-formed LDM/STM,
the pass would first insert a SUB instruction to reset the base register,
and then (at the same location, incorrectly) insert the LDM/STM itself.
This patch fixes PR19972. Patch by Moritz Roth.
llvm-svn: 210542
Committed in r209178 then reverted in r209251 due to LTO breakage,
here's a proper fix for the case of the missing subprogram DIE. The DIEs
were there, just in other compile units. Using the SPMap we can find the
right compile unit to search for and produce cross-unit references to
describe this kind of inlining.
One existing test case needed to be updated because it had a function
that wasn't in the CU's subprogram list, so it didn't appear in the
SPMap.
llvm-svn: 209335
This removes the -segmented-stacks command line flag in favor of a
per-function "split-stack" attribute.
Patch by Luqman Aden and Alex Crichton!
llvm-svn: 205997
Unlike other v6+ processors, cortex-m0 never supports unaligned accesses.
From the v6m ARM ARM:
"A3.2 Alignment support: ARMv6-M always generates a fault when an unaligned
access occurs."
rdar://16491560
llvm-svn: 205452
Summary:
AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for
targets with mature MC support. Such targets will always parse the inline
assembly (even when emitting assembly). Targets without mature MC support
continue to use EmitRawText() for assembly output.
The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced
with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler
to parse inline assembly (even when emitting assembly output). UseIntegratedAs
is set to true for targets that consider any failure to parse valid assembly
to be a bug. Target specific subclasses generally enable the integrated
assembler in their constructor. The default value can be overridden with
-no-integrated-as.
All tests that rely on inline assembly supporting invalid assembly (for example,
those that use mnemonics such as 'foo' or 'hello world') have been updated to
disable the integrated assembler.
Changes since review (and last commit attempt):
- Fixed test failures that were missed due to configuration of local build.
(fixes crash.ll and a couple others).
- Fixed tests that happened to pass because the local build was on X86
(should fix 2007-12-17-InvokeAsm.ll)
- mature-mc-support.ll's should no longer require all targets to be compiled.
(should fix ARM and PPC buildbots)
- Object output (-filetype=obj and similar) now forces the integrated assembler
to be enabled regardless of default setting or -no-integrated-as.
(should fix SystemZ buildbots)
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2686
llvm-svn: 201333
Summary:
AsmPrinter::EmitInlineAsm() will no longer use the EmitRawText() call for targets with mature MC support. Such targets will always parse the inline assembly (even when emitting assembly). Targets without mature MC support continue to use EmitRawText() for assembly output.
The hasRawTextSupport() check in AsmPrinter::EmitInlineAsm() has been replaced with MCAsmInfo::UseIntegratedAs which when true, causes the integrated assembler to parse inline assembly (even when emitting assembly output). UseIntegratedAs is set to true for targets that consider any failure to parse valid assembly to be a bug. Target specific subclasses generally enable the integrated assembler in their constructor. The default value can be overridden with -no-integrated-as.
All tests that rely on inline assembly supporting invalid assembly (for example, those that use mnemonics such as 'foo' or 'hello world') have been updated to disable the integrated assembler.
Reviewers: rafael
Reviewed By: rafael
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2686
llvm-svn: 201237
Fix a crash in SjLjEHPrepare::lowerIncomingArguments caused by treating
VectorType like an aggregate. It's first-class!
<rdar://problem/15854596>
llvm-svn: 199768
We are going to drop debug info without a version number or with a different
version number, to make sure we don't crash when we see bitcode files with
different debug info metadata format.
llvm-svn: 195504
This commit implements the correct lowering of the
COPY_STRUCT_BYVAL_I32 pseudo-instruction for thumb1 targets.
Previously, the lowering of COPY_STRUCT_BYVAL_I32 generated the
post-increment forms of ldr/ldrh/ldrb instructions. Thumb1 does not
have the post-increment form of these instructions so the generated
assembly contained invalid instructions.
Passing the generated assembly to gcc caused it to complain with an
error like this:
Error: cannot honor width suffix -- `ldrb r3,[r0],#1'
and the integrated assembler would generate an object file with an
invalid instruction encoding.
This commit contains a small test case that demonstrates the problem
with thumb1 targets as well as an expanded test case that more
throughly tests the lowering of byval struct passing for arm,
thumb1, and thumb2 targets.
llvm-svn: 192916
The usual default of "dmb ish" (inner-shareable) isn't even a valid instruction
on v6M or v7M (well, it does the same thing but software is strongly
discouraged from using it) so we should emit a full-system barrier there.
llvm-svn: 189483
DICompositeType will have an identifier field at position 14. For now, the
field is set to null in DIBuilder.
For DICompositeTypes where the template argument field (the 13th field)
was optional, modify DIBuilder to make sure the template argument field is set.
Now DICompositeType has 15 fields.
Update DIBuilder to use NULL instead of "i32 0" for null value of a MDNode.
Update verifier to check that DICompositeType has 15 fields and the last
field is null or a MDString.
Update testing cases to include an extra field for DICompositeType.
The identifier field will be used by type uniquing so a front end can
genearte a DICompositeType with a unique identifer.
llvm-svn: 189282
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
llvm-svn: 188513
instructions. With this patch:
1. ldr.n is recognized as mnemonic for the short encoding
2. ldr.w is recognized as menmonic for the long encoding
3. ldr will map to either short or long encodings depending on the size of the offset
llvm-svn: 186831
This update was done with the following bash script:
find test/CodeGen -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc.*debug" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC: *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
done
sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
mv $TEMP $NAME
fi
done
llvm-svn: 186280
This was done with the following sed invocation to catch label lines demarking function boundaries:
sed -i '' "s/^;\( *\)\([A-Z0-9_]*\):\( *\)test\([A-Za-z0-9_-]*\):\( *\)$/;\1\2-LABEL:\3test\4:\5/g" test/CodeGen/*/*.ll
which was written conservatively to avoid false positives rather than false negatives. I scanned through all the changes and everything looks correct.
llvm-svn: 186258
First, taking advantage of the fact that the virtual base registers are allocated in order of the local frame offsets, remove the quadratic register-searching behavior. Because of the ordering, we only need to check the last virtual base register created.
Second, store the frame index in the FrameRef structure, and get the frame index and the local offset from this structure at the top of the loop iteration. This allows us to de-nest the loops in insertFrameReferenceRegisters (and I think makes the code cleaner). I also moved the needsFrameBaseReg check into the first loop over instructions so that we don't bother pushing FrameRefs for instructions that don't want a virtual base register anyway.
Lastly, and this is the only functionality change, avoid the creation of single-use virtual base registers. These are currently not useful because, in general, they end up replacing what would be one r+r instruction with an add and a r+i instruction. Committing this removes the XFAIL in CodeGen/PowerPC/2007-09-07-LoadStoreIdxForms.ll
Jim has okayed this off-list.
llvm-svn: 180799
This reverts commit 342d92c7a0adeabc9ab00f3f0d88d739fe7da4c7.
Turns out we're going with a different schema design to represent
DW_TAG_imported_modules so we won't need this extra field.
llvm-svn: 178215
This is just the basic groundwork for supporting DW_TAG_imported_module but I
wanted to commit this before pushing support further into Clang or LLVM so that
this rather churny change is isolated from the rest of the work. The major
churn here is obviously adding another field (within the common DIScope prefix)
to all DIScopes (files, classes, namespaces, lexical scopes, etc). This should
be the last big churny change needed for DW_TAG_imported_module/using directive
support/PR14606.
llvm-svn: 178099
Apparently my final cleanup to use a relevant suffix for these tests before
committing r176831 caused them to stop running since lit wasn't configured to
run tests with that suffix in those directories (why don't we just have a
global suffix list?). So, add the suffix to the relevant directories & fix the
test that has bitrotted over the last week due to my debug info schema changes.
llvm-svn: 177315
It is possible that frame pointer is not found in the
callee saved info, thus FramePtrSpillFI may be incorrect
if we don't check the result of hasFP(MF).
Besides, if we enable the stack coloring algorithm, there
will be an assertion to ensure the slot is live. But in
the test case, %var1 is not live in the prologue of the
function, and we will get the assertion failure.
Note: There is similar code in ARMFrameLowering.cpp.
llvm-svn: 175616
The count attribute is more accurate with regards to the size of an array. It
also obviates the upper bound attribute in the subrange. We can also better
handle an unbound array by setting the count to -1 instead of the lower bound to
1 and upper bound to 0.
llvm-svn: 169312
The count field is necessary because there isn't a difference between the 'lo'
and 'hi' attributes for a one-element array and a zero-element array. When the
count is '0', we know that this is a zero-element array. When it's >=1, then
it's a normal constant sized array. When it's -1, then the array is unbounded.
llvm-svn: 169218
another mechanical change accomplished though the power of terrible Perl
scripts.
I have manually switched some "s to 's to make escaping simpler.
While I started this to fix tests that aren't run in all configurations,
the massive number of tests is due to a really frustrating fragility of
our testing infrastructure: things like 'grep -v', 'not grep', and
'expected failures' can mask broken tests all too easily.
Essentially, I'm deeply disturbed that I can change the testsuite so
radically without causing any change in results for most platforms. =/
llvm-svn: 159547
versions of Bash. In addition, I can back out the change to the lit
built-in shell test runner to support this.
This should fix the majority of fallout on Darwin, but I suspect there
will be a few straggling issues.
llvm-svn: 159544
This was done through the aid of a terrible Perl creation. I will not
paste any of the horrors here. Suffice to say, it require multiple
staged rounds of replacements, state carried between, and a few
nested-construct-parsing hacks that I'm not proud of. It happens, by
luck, to be able to deal with all the TCL-quoting patterns in evidence
in the LLVM test suite.
If anyone is maintaining large out-of-tree test trees, feel free to poke
me and I'll send you the steps I used to convert things, as well as
answer any painful questions etc. IRC works best for this type of thing
I find.
Once converted, switch the LLVM lit config to use ShTests the same as
Clang. In addition to being able to delete large amounts of Python code
from 'lit', this will also simplify the entire test suite and some of
lit's architecture.
Finally, the test suite runs 33% faster on Linux now. ;]
For my 16-hardware-thread (2x 4-core xeon e5520): 36s -> 24s
llvm-svn: 159525
* Removed test/lib/llvm.exp - it is no longer needed
* Deleted the dg.exp reading code from test/lit.cfg. There are no dg.exp files
left in the test suite so this code is no longer required. test/lit.cfg is
now much shorter and clearer
* Removed a lot of duplicate code in lit.local.cfg files that need access to
the root configuration, by adding a "root" attribute to the TestingConfig
object. This attribute is dynamically computed to provide the same
information as was previously provided by the custom getRoot functions.
* Documented the config.root attribute in docs/CommandGuide/lit.pod
llvm-svn: 153408
fixes: Use a separate register, instead of SP, as the
calling-convention resource, to avoid spurious conflicts with
actual uses of SP. Also, fix unscheduling of calling sequences,
which can be triggered by pseudo-two-address dependencies.
llvm-svn: 143206
it fixes the dragonegg self-host (it looks like gcc is miscompiled).
Original commit messages:
Eliminate LegalizeOps' LegalizedNodes map and have it just call RAUW
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
Delete #if 0 code accidentally left in.
llvm-svn: 143188
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
llvm-svn: 143177
ARMII::AddrModeT1_s, we need to take into account that if the frame register is
ARM::SP, then the number of bits is 8. If it's not ARM::SP, then the number of
bits is 5.
llvm-svn: 141529
to be unreliable on platforms which require memcpy calls, and it is
complicating broader legalize cleanups. It is hoped that these cleanups
will make memcpy byval easier to implement in the future.
llvm-svn: 138977
for pre-2.9 bitcode files. We keep x86 unaligned loads, movnt, crc32, and the
target indep prefetch change.
As usual, updating the testsuite is a PITA.
llvm-svn: 133337
In Thumb mode we cannot handle GPR virtual registers, even though some
instructions can. When isel is lowering a CopyFromReg, it should limit
itself to subclasses of getRegClassFor(VT).
<rdar://problem/9624323>
llvm-svn: 133210
more callee-saved registers and introduce copies. Only allows it if scheduling
a node above calls would end up lessen register pressure.
Call operands also has added ABI restrictions for register allocation, so be
extra careful with hoisting them above calls.
rdar://9329627
llvm-svn: 130245
Optimize trivial branches in CodeGenPrepare, which often get created from the
lowering of objectsize intrinsics. Unfortunately, a number of tests were relying
on llc not optimizing trivial branches, so I had to add an option to allow them
to continue to test what they originally tested.
This fixes <rdar://problem/8785296> and <rdar://problem/9112893>.
llvm-svn: 127498
lowering of objectsize intrinsics. Unfortunately, a number of tests were relying
on llc not optimizing trivial branches, so I had to add an option to allow them
to continue to test what they originally tested.
This fixes <rdar://problem/8785296> and <rdar://problem/9112893>.
llvm-svn: 127459
TargetInstrInfo:
Change produceSameValue() to take MachineRegisterInfo as an optional argument.
When in SSA form, targets can use it to make more aggressive equality analysis.
Machine LICM:
1. Eliminate isLoadFromConstantMemory, use MI.isInvariantLoad instead.
2. Fix a bug which prevent CSE of instructions which are not re-materializable.
3. Use improved form of produceSameValue.
ARM:
1. Teach ARM produceSameValue to look pass some PIC labels.
2. Look for operands from different loads of different constant pool entries
which have same values.
3. Re-implement PIC GA materialization using movw + movt. Combine the pair with
a "add pc" or "ldr [pc]" to form pseudo instructions. This makes it possible
to re-materialize the instruction, allow machine LICM to hoist the set of
instructions out of the loop and make it possible to CSE them. It's a bit
hacky, but it significantly improve code quality.
4. Some minor bug fixes as well.
With the fixes, using movw + movt to materialize GAs significantly outperform the
load from constantpool method. 186.crafty and 255.vortex improved > 20%, 254.gap
and 176.gcc ~10%.
llvm-svn: 123905
state. Previously Thumb2 would restore sp from fp like this:
mov sp, r7
sub, sp, #4
If an interrupt is taken after the 'mov' but before the 'sub', callee-saved
registers might be clobbered by the interrupt handler. Instead, try
restoring directly from sp:
add sp, #4
Or, if necessary (with VLA, etc.) use a scratch register to compute sp and
then restore it:
sub.w r4, r7, #8
mov sp, r7
rdar://8465407
llvm-svn: 119977
It is only supported for ARM code. Normally Thumb2 code would use DMB instead,
but depending on how the compiler is invoked (e.g., -mattr=-db) that might be
disabled. This prevents a "cannot select MEMBARRIER_MCR" error in that
situation. Radar 8644195
llvm-svn: 118642
There were a number of issues to fix up here:
* The "device" argument of the llvm.memory.barrier intrinsic should be
used to distinguish the "Full System" domain from the "Inner Shareable"
domain. It has nothing to do with using DMB vs. DSB instructions.
* The compiler should never need to emit DSB instructions. Remove the
ARMISD::SYNCBARRIER node and also remove the instruction patterns for DSB.
* Merge the separate DMB/DSB instructions for options only used for the
disassembler with the default DMB/DSB instructions. Add the default
"full system" option ARM_MB::SY to the ARM_MB::MemBOpt enum.
* Add a separate ARMISD::MEMBARRIER_MCR node for subtargets that implement
a data memory barrier using the MCR instruction.
* Fix up encodings for these instructions (except MCR).
I also updated the tests and added a few new ones to check for DMB options
that were not currently being exercised.
llvm-svn: 117756
This reverts revision 114633. It was breaking llvm-gcc-i386-linux-selfhost.
It seems there is a downstream bug that is exposed by
-cgp-critical-edge-splitting=0. When that bug is fixed, this patch can go back
in.
Note that the changes to tailcallfp2.ll are not reverted. They were good are
required.
llvm-svn: 114859
"For ARM stack frames that utilize variable sized objects and have either
large local stack areas or require dynamic stack realignment, allocate a
base register via which to access the local frame. This allows efficient
access to frame indices not accessible via the FP (either due to being out
of range or due to dynamic realignment) or the SP (due to variable sized
object allocation). In particular, this greatly improves efficiency of access
to spill slots in Thumb functions which contain VLAs."
r112986 fixed a latent bug exposed by the above.
llvm-svn: 112989
large local stack areas or require dynamic stack realignment, allocate a
base register via which to access the local frame. This allows efficient
access to frame indices not accessible via the FP (either due to being out
of range or due to dynamic realignment) or the SP (due to variable sized
object allocation). In particular, this greatly improves efficiency of access
to spill slots in Thumb functions which contain VLAs.
rdar://7352504
rdar://8374540
rdar://8355680
llvm-svn: 112883
memory and synchronization barrier dmb and dsb instructions.
- Change instruction names to something more sensible (matching name of actual
instructions).
- Added tests for memory barrier codegen.
llvm-svn: 110785
Also added a test case to check for the added benefit of this patch: it's optimizing away the unnecessary restore of sp from fp for some non-leaf functions.
llvm-svn: 110707
reserved, not available for general allocation. This eliminates all the
extra checks for Darwin.
This change also fixes the use of FP to access frame indices in leaf
functions and cleaned up some confusing code in epilogue emission.
llvm-svn: 110655
occasions, caused code to be generated in a different order.
All cases I've seen involved float softening in the type
legalizer, and this could be perhaps be fixed there, but
it's better not to generate things differently in the first
place. 7797940 (6/29/2010..7/15/2010).
llvm-svn: 108484
PrologEpilog code, and use it to determine whether
the asm forces stack alignment or not. gcc consistently
does not do this for GCC-style asms; Apple gcc inconsistently
sometimes does it for asm blocks. There is no
convenient place to put a bit in either the SDNode or
the MachineInstr form, so I've added an extra operand
to each; unlovely, but it does allow for expansion for
more bits, should we need it. PR 5125. Some
existing testcases are affected.
The operand lists of the SDNode and MachineInstr forms
are indexed with awesome mnemonics, like "2"; I may
fix this someday, but not now. I'm not making it any
worse. If anyone is inspired I think you can find all
the right places from this patch.
llvm-svn: 107506
getFunctionAlignment and the corresponding use of that value in the ARM
asm printer, but now we're using the standard asm printer. The result of
this was that function alignments were dropped completely for Thumb functions.
Radar 8143571.
llvm-svn: 107435