This required the implementation of RISCVTargetInstrInfo::copyPhysReg. Support
for lowering global addresses follow in the next patch.
Differential Revision: https://reviews.llvm.org/D29934
llvm-svn: 317685
rL162640 introduced CodeGenTarget::guessInstructionProperties. If a target
sets guessInstructionProperties=0 in its FooInstrInfo, tablegen will error if
it has to guess properties from patterns. Unfortunately,
guessInstructionProperties=0 can't be used with current upstream LLVM as
instructions in the TargetOpcode namespace are always included and sometimes
have inferred properties for mayLoad, mayStore, and hasSideEffects. This patch
provides the simplest possible fix to this problem, setting default values for
these fields in the TargetOpcode scope. There is no intended functional
change, as the explicitly set properties should match what was previously
inferred. A number of the instructions had hasSideEffects=1 inferred
unintentionally. This patch makes it explicit, while future patches (such as
D37097) correct the property.
Differential Revision: https://reviews.llvm.org/D37065
llvm-svn: 317674
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
This header already includes a CodeGen header and is implemented in
lib/CodeGen, so move the header there to match.
This fixes a link error with modular codegeneration builds - where a
header and its implementation are circularly dependent and so need to be
in the same library, not split between two like this.
llvm-svn: 317379
This adds the minimum necessary to support codegen for simple ALU operations
on RV32. Prolog and epilog insertion, support for memory operations etc etc
follow in future patches.
Leave guessInstructionProperties=1 until https://reviews.llvm.org/D37065 is
reviewed and lands.
Differential Revision: https://reviews.llvm.org/D29933
llvm-svn: 316188
While parameterising by XLen, also take the opportunity to clean up the
formatting of the RISCV .td files.
This commit unifies the in-tree code with my patchset at
<https://github.com/lowrisc/riscv-llvm>.
llvm-svn: 316159
r315275 set the IsLittleEndian parameter incorrectly. This patch corrects
this, and adds a test to ensure such mistakes will be caught in the future.
llvm-svn: 316091
Reverting to investigate layering effects of MCJIT not linking
libCodeGen but using TargetMachine::getNameWithPrefix() breaking the
lldb bots.
This reverts commit r315633.
llvm-svn: 315637
Merge LLVMTargetMachine into TargetMachine.
- There is no in-tree target anymore that just implements TargetMachine
but not LLVMTargetMachine.
- It should still be possible to stub out all the various functions in
case a target does not want to use lib/CodeGen
- This simplifies the code and avoids methods ending up in the wrong
interface.
Differential Revision: https://reviews.llvm.org/D38489
llvm-svn: 315633
This adds debug tracing to the table-generated assembly instruction matcher,
enabled by the -debug-only=asm-matcher option.
The changes in the target AsmParsers are to add an MCInstrInfo reference under
a consistent name, so that we can use it from table-generated code. This was
already being used this way for targets that use deprecation warnings, but 5
targets did not have it, and Hexagon had it under a different name to the other
backends.
llvm-svn: 315445
%lo(), %hi(), and %pcrel_hi() are supported and test cases have been added to
ensure the appropriate fixups and relocations are generated. I've added an
instruction format field which is used in RISCVMCCodeEmitter to, for
instance, tell whether it should emit a lo12_i fixup or a lo12_s fixup
(RISC-V has two 12-bit immediate encodings depending on the instruction
type).
Differential Revision: https://reviews.llvm.org/D23568
llvm-svn: 314389
This Disassembly support allows for 'round-trip' testing, and rv32i-valid.s
has been updated appropriately.
Differential Revision: https://reviews.llvm.org/D23567
llvm-svn: 313486
This patch supports all RV32I instructions as described in the RISC-V manual.
A future patch will add support for pseudoinstructions and other instruction
expansions (e.g. 0-arg fence -> fence iorw, iorw).
Differential Revision: https://reviews.llvm.org/D23566
llvm-svn: 313485
With the addition of RISCVInstPrinter, it is now possible to test the basic
operation of the RISCV MC layer.
Differential Revision: https://reviews.llvm.org/D23564
llvm-svn: 310917
This doesn't yet support parsing things like %pcrel_hi(foo), but will handle
basic instructions with register or immediate operands.
Differential Revision: https://reviews.llvm.org/D23563
llvm-svn: 310361
IMHO it is an antipattern to have a enum value that is Default.
At any given piece of code it is not clear if we have to handle
Default or if has already been mapped to a concrete value. In this
case in particular, only the target can do the mapping and it is nice
to make sure it is always done.
This deletes the two default enum values of CodeModel and uses an
explicit Optional<CodeModel> when it is possible that it is
unspecified.
llvm-svn: 309911
The issue is not if the value is pcrel. It is whether we have a
relocation or not.
If we have a relocation, the static linker will select the upper
bits. If we don't have a relocation, we have to do it.
llvm-svn: 307730
processFixupValue is called on every relaxation iteration. applyFixup
is only called once at the very end. applyFixup is then the correct
place to do last minute changes and value checks.
While here, do proper range checks again for fixup_arm_thumb_bl. We
used to do it, but dropped because of thumb2. We now do it again, but
use the thumb2 range.
llvm-svn: 306177
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
TargetPassConfig is not useful for targets that do not use the CodeGen
library, so we may just as well store a pointer to an
LLVMTargetMachine instead of just to a TargetMachine.
While at it, also change the constructor to take a reference instead of a
pointer as the TM must not be nullptr.
llvm-svn: 304247
A number of backends (AArch64, MIPS, ARM) have been using
MCContext::reportError to report issues such as out-of-range fixup values in
their TgtAsmBackend. This is great, but because MCContext couldn't easily be
threaded through to the adjustFixupValue helper function from its usual
callsite (applyFixup), these backends ended up adding an MCContext* argument
and adding another call to applyFixup to processFixupValue. Adding an
MCContext parameter to applyFixup makes this unnecessary, and even better -
applyFixup can take a reference to MCContext rather than a potentially null
pointer.
Differential Revision: https://reviews.llvm.org/D30264
llvm-svn: 299529
This is enough to compile and link but doesn't yet do anything particularly
useful. Once an ASM parser and printer are added in the next two patches, the
whole thing can be usefully tested.
Differential Revision: https://reviews.llvm.org/D23562
llvm-svn: 285770
For now, only add instruction definitions for basic ALU operations. Our
initial target is a working MC layer rather than codegen, so appropriate
SelectionDAG patterns will come later.
Differential Revision: https://reviews.llvm.org/D23561
llvm-svn: 285769
This contains just enough for lib/Target/RISCV to compile. Notably a basic
RISCVTargetMachine and RISCVTargetInfo. At this point you can attempt llc
-march=riscv32 myinput.ll and will find it fails due to the lack of
MCAsmInfo.
See http://lists.llvm.org/pipermail/llvm-dev/2016-August/103748.html for
further discussion
Differential Revision: https://reviews.llvm.org/D23560
llvm-svn: 285712