This time, make sure we don't try to print fixits with newline characters,
since they don't have a valid column width, and they don't look good anyway.
PR13417 (and originally <rdar://problem/11877454>)
llvm-svn: 160561
This code is very sensitive to the difference between "columns" as printed
and "bytes" (SourceManager columns). All variables are now named explicitly
and our assumptions are (hopefully) documented as both comment and assertion.
Whether parseable fixits should use byte offsets or Unicode character counts
is pending discussion on the mailing list; currently the implementation uses
bytes (and has no problems on lines containing multibyte characters).
This has been added to the user manual.
<rdar://problem/11877454>
llvm-svn: 160319
comparison between two templated types when they both appear in a diagnostic.
Type elision will remove indentical template arguments, which can be disabled
with -fno-elide-type. Cyan highlighting is applied to the differing types.
For more formatting, -fdiagnostic-show-template-tree will output the template
type as an indented text tree, with differences appearing inline. Template
tree works with or without type elision.
llvm-svn: 159216
This occurs when you have two insertions and the first one is so long that the
second fixit's column is before the first fixit ends. The edits themselves
don't actually overlap, but our command-line preview does.
llvm-svn: 158229
http://llvm.org/bugs/show_bug.cgi?id=12924
This issue was that the source location was pointing to a
non-printable character and so CaretEnd was pointing one
_column_ past the caret but not one _character_ past the
caret. So the conversion between column and byte locations
wasn't working (because the conversion is only valid from
the first column or byte of a character).
llvm-svn: 157372
from the frontend when the location is invalid and the SourceManager null.
Instead of keeping the SourceManager object in DiagnosticRenderer, propagate it
to the calls accordingly (as reference when it is expected to not be null, or pointer
when it may be null).
This effectively makes DiagnosticRenderer not tied to a specific SourceManager,
removing a hack from TextDiagnosticPrinter.
rdar://11386874
llvm-svn: 156536
Unprintable source in diagnostics is transformed to a printable form and then
displayed with reversed colors if possible. Unprintable characters are
displayed as <U+NNNN> while bytes that do not represent valid characters are
shown as <XX>.
Column adjustments to diagnostic carets, highlighted ranges, and fixups are
made both for characters escaped as above and for characters which are
printable but take up more than a single column.
llvm-svn: 154980
This reverts commit e9a3b76ba589a8a884e978273beaed0d97cf9861.
Revert "fix display of source lines with null characters"
This reverts commit 70712b276e40bbe11e5063dfc7e82ce3209929cd.
llvm-svn: 154950
Unprintable source in diagnostics is transformed to a printable form and then
displayed with reversed colors if possible. Unprintable characters are
displayed as <U+NNNN> while bytes that do not represent valid characters are
shown as <XX>.
Column adjustments to diagnostic carets, highlighted ranges, and fixups are
made both for characters escaped as above and for characters which are
printable but take up more than a single column.
llvm-svn: 154946
pulled into DiagnosticNoteRenderer, and common DiagnosticRenderer that
assumes that all custom diagnostic messages are notes. Also extend
DiagnosticRenderer to work with StoredDiagnostics in preparation for
subsequent changes.
llvm-svn: 150455
the policy of how diagnostics are lowered/rendered, while TextDiagnostic handles
the actual pretty-printing.
This is a first part of reworking SerializedDiagnosticPrinter to use the same
inclusion-stack/macro-expansion logic as TextDiagnostic.
llvm-svn: 146819
formatting as any other diagnostic, they will be properly line wrapped and
otherwise pretty printed. Let's take advantage of that and the new factoring to
add some helpful information to them (much like template backtrace notes and
other notes): the name of the macro whose expansion is being noted. This makes
a world of difference if caret diagnostics are disabled, making the expansion
notes actually useful in this case. It also helps ensure that in edge cases the
information the user needs is present. Consider:
% nl -ba t5.cc
1 #define M(x, y, z) \
2 y
3
4 M(
5 1,
6 2,
7 3);
We now produce:
% ./bin/clang -fsyntax-only t5.cc
t5.cc:6:3: error: expected unqualified-id
2,
^
t5.cc:2:3: note: expanded from macro: M
y
^
1 error generated.
Without the added information in the note, the name of the macro being expanded
would never be shown.
This also deletes a FIXME to use the diagnostic formatting. It's not yet clear
to me that we *can* do this reasonably, and the production of this message was
my primary goal here anyways.
I'd love any comments or suggestions on improving these notes, their wording,
etc. Currently, I need to make them provide more helpful information in the
presence of a token-pasting buffer, and I'm pondering adding something along
the lines of "expanded from argument N of macro: ...".
llvm-svn: 142127
this long quest: actually use the note printing machinery for each macro
expansion note rather than a hacky version of it. This will colorize and
format the notes the same as any other. There is still some stuff to fix
here, but it's one step closer.
No test case changes because currently we don't do anything differently
that I can FileCheck for -- I don't really want to try matching the
color escape codes... Suggestions for how to test this are welcome. =]
llvm-svn: 142121
standing deficiency: we were providing no macro backtrace information
whenever caret diagnostics were turned off. This sinks the logic for
suppressing the code snippet and caret to the code that actually prints
tho code snippet and caret. Along the way, clean up the naming of
functions, remove some now fixed FIXMEs, and generally improve the
wording and logic of this process.
Add a test case exerecising this functionality. It is notable that the
resulting messages are extremely low quality. I'm working on a follow-up
patch that should address this and have left a FIXME in the test case.
llvm-svn: 142120
the SourceManager doesn't change, and the source files don't change.
This greatly simplifies the interfaces and interactions. The lifetime of
the TextDiagnostic object forms the 'session' over which we attempt to
condense and deduplicate information in diagnostics.
llvm-svn: 142104
been there. Also delete their redundant doxyments in favor of those in
the source file. I'm putting the doxyments for private and static
helpers into the implementation file, and only the public interface
doxyments into the header. If folks have strong opinions about this type
of split, feel free to chime in, I'm happy to re-organize.
llvm-svn: 142087
making it accessible to anyone from the Frontend library. Still a good
bit of cleanup to do here, but its a good milestone. This ensures that
*all* of the functionality needed to implement the DiagnosticConsumer is
exposed via the generic interface in some form. No sneaky re-use of
static functions.
llvm-svn: 142086