which versions of an OS provide a certain facility. For example,
void foo()
__attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6)));
says that the function "foo" was introduced in 10.2, deprecated in
10.4, and completely obsoleted in 10.6. This attribute ties in with
the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that
we want to deploy back to Mac OS X 10.1). There are several concrete
behaviors that this attribute enables, as illustrated with the
function foo() above:
- If we choose a deployment target >= Mac OS X 10.4, uses of "foo"
will result in a deprecation warning, as if we had placed
attribute((deprecated)) on it (but with a better diagnostic)
- If we choose a deployment target >= Mac OS X 10.6, uses of "foo"
will result in an "unavailable" warning (in C)/error (in C++), as
if we had placed attribute((unavailable)) on it
- If we choose a deployment target prior to 10.2, foo() is
weak-imported (if it is a kind of entity that can be weak
imported), as if we had placed the weak_import attribute on it.
Naturally, there can be multiple availability attributes on a
declaration, for different platforms; only the current platform
matters when checking availability attributes.
The only platforms this attribute currently works for are "ios" and
"macosx", since we already have -mxxxx-version-min flags for them and we
have experience there with macro tricks translating down to the
deprecated/unavailable/weak_import attributes. The end goal is to open
this up to other platforms, and even extension to other "platforms"
that are really libraries (say, through a #pragma clang
define_system), but that hasn't yet been designed and we may want to
shake out more issues with this narrower problem first.
Addresses <rdar://problem/6690412>.
As a drive-by bug-fix, if an entity is both deprecated and
unavailable, we only emit the "unavailable" diagnostic.
llvm-svn: 128127
This rename serves two purposes:
- It reflects the actual functionality of this analysis.
- We will have more than one reachability analysis.
llvm-svn: 127930
add support for the OpenCL __private, __local, __constant and
__global address spaces, as well as the __read_only, _read_write and
__write_only image access specifiers. Patch originally by ARM;
language-specific address space support by myself.
llvm-svn: 127915
overload, so that we actually do the resolution for full expressions
and emit more consistent, useful diagnostics. Also fixes an IRGen
crasher, where Sema wouldn't diagnose a resolvable bound member
function template-id used in a full-expression (<rdar://problem/9108698>).
llvm-svn: 127747
operands to a binary expression; it doesn't make sense in all
contexts. The right answer would be to see if the user forgot at ().
Fixes <rdar://problem/9136502>.
llvm-svn: 127740
forward-looking "goto" statement, make sure to insert it *after* the
last declaration in the identifier resolver's declaration chain that
is either outside of the function/block/method's scope or that is
declared in that function/block/method's specific scope. Previously,
we could end up inserting the label ahead of declarations in inner
scopes, confusing C++ name lookup.
Fixes PR9491/<rdar://problem/9140426> and <rdar://problem/9135994>.
Note that the crash-on-invalid PR9495 is *not* fixed. That's a
separate issue.
llvm-svn: 127737
declaration as this results in a confusing error message,
instead of message related to missing property declaration.
// rdar://9106929
llvm-svn: 127682
cannot yet be resolved, be sure to push the new label declaration into
the right place within the identifier chain. Otherwise, name lookup in
C++ gets confused when searching for names that are lexically closer
than the label. Fixes PR9463.
llvm-svn: 127623
Change the interface to expose the new information and deal with the enormous fallout.
Introduce the new ExceptionSpecificationType value EST_DynamicNone to more easily deal with empty throw specifications.
Update the tests for noexcept and fix the various bugs uncovered, such as lack of tentative parsing support.
llvm-svn: 127537
enumeration type to another in C, classify enumeration constants as if
they had the type of their enclosing enumeration. Fixes
<rdar://problem/9116337>.
llvm-svn: 127514
in the LLVM test suite, this function was consuming 7.4% of -fsyntax-only time. This change fixes this issue
by delaying the check that the warning would be issued within a system macro by as long as possible. The
main negative of this change is now the logic for this check is done in multiple places in this function instead
of just in one place up front.
llvm-svn: 127425
Instead, create a small set of Stmt* -> CFGBlock* mappings during CFG construction for only the statements we care about
relating to the diagnostics we want to check for reachability.
llvm-svn: 127396
diagnostic. Also, these attributes are commonly written with macros which we
actually pre-define, so instead of expanding the macro location, refer to the
instantiation location and name it using the macro loc.
llvm-svn: 127219
of a C++0x inline namespace within enclosing namespaces, as noted in
C++0x [namespace.def]p8.
Fixes <rdar://problem/9006349>, a libc++ failure where Clang was
rejected an explicit specialization of std::swap (since libc++ puts it
into an inline, versioned namespace std::__1).
llvm-svn: 127162
to set the source-location information for the template arguments to
the *transformed* source-location information, not the original
source-location information. Fixes <rdar://problem/8986308> (a libc++
SFINAE issue) and the Boost.Polygon failure.
llvm-svn: 127150
declaration because of interesting ordering dependencies while
instantiating a class template or member class thereof. Complain,
rather than asserting (+Asserts) or silently rejecting the code
(-Asserts).
Fixes the crash-on-invalid in PR8965.
llvm-svn: 127129
conversion function when we're binding the result to a reference, drop
cv-qualifiers on the type we're referring to, since we should be
deducing a type that can be adjusted (via cv-qualification) to the
requested type. Fixes PR9336, and the remaining Boost.Assign failure.
llvm-svn: 127117
template name as the result of substitution. The qualifier is handled
separately by the tree transformer, so we would end up in an
inconsistent state.
This is actually the last bit of PR9016, and possibly also fixes
PR8965. It takes Boost.Icl from "epic fail" down to a single failure.
llvm-svn: 127108
template (not a specialization!), use the "injected" function template
arguments, which correspond to the template parameters of the function
template. This is required when substituting into the default template
parameters of template template parameters within a function template.
Fixes PR9016.
llvm-svn: 127092
transform the type that replaces the template type parameter. In the
vast majority of cases, there's nothing to do, because most template
type parameters are replaced with something non-dependent that doesn't
need further transformation. However, when we're dealing with the
default template arguments of template template parameters, we might
end up replacing a template parameter (of the template template
parameter) with a template parameter of the enclosing template.
This addresses part of PR9016, but not within function
templates. That's a separate issue.
llvm-svn: 127091
too. Fixes PR7900.
While I'm in this area, improve the diagnostic when the type being
destroyed doesn't match either of the types we found.
llvm-svn: 127041
to cope with non-type templates by providing appropriate
errors. Previously, we would either assert, crash, or silently build a
dependent type when we shouldn't. Fixes PR9226.
llvm-svn: 127037
to find the instantiated declaration within a template instantiation
fails to do so. It's likely that the original instantiation got
dropped due to instantiation failures, which doesn't actually break
the invariants of the AST. This eliminates a number of
crash-on-invalid failures, e.g., PR9300.
llvm-svn: 127030