Add a more general purpose qMemoryRegionInfo packet which can
describe various attributes about a memory region. Currently it
will return the start address, size, and permissions (read, write,
executable) for the memory region. It may be possible to add
additional attributes in the future such as whether the region is
designated as stack memory or jitted code a la vmmap.
I still haven't implemented the lldb side of the code to use this
packet yet so there may be unexpected behavior - but the basic implementation looks
about right. I'll hook it up to lldb soon and fix any problems that crop up.
llvm-svn: 144175
whether a given address is in an executable region of memory or
not. I haven't written the lldb side that will use this packet it
hasn't been tested yet but it's a simple enough bit of code.
I want to have this feature available for the unwinder code. When
we're stopped at an address with no valid symbol context, there are
a number of questions I'd like to ask --
is the current pc value in an executable region (e.g. did they
jump to unallocated/unexecutable memory? we know how to unwind
from here if so.)
Is the stack pointer or the frame pointer the correct register
to use to find the caller's saved pc value?
Once we're past the first frame we can trust things like eh_frame
and ABI unwind schemes but the first frame is challenging and having
a way to check potential addresses to see if they're executable or
not would help narrow down the possibilities a lot.
llvm-svn: 144074
doesn't handle bitfields in eFormatChar's correctly, only eFormatUnsigned.
Fix DataExtractor::Dump to dump the bitfield eFormatChars correctly.
llvm-svn: 144069
be in the target. All of the environment, args, stdin/out/err files, etc have
all been moved. Also re-enabled the ability to launch a process in a separate
terminal on MacOSX.
llvm-svn: 144061
which will in the future allow expressions to be
compiled as C, C++, and Objective-C instead of the
current default Objective-C++. This feature requires
some additional support from Clang -- specifically, it
requires reference types in the parser regardless of
language -- so it is not yet exposed to the user.
llvm-svn: 144042
dated 2010-21-15. The test started failure recently probably due to work done on the command parsing.
Anyway, the specific test sequence is invalid and is fixed now.
llvm-svn: 144039
a) adds a new --synchronicity (-s) setting for "command script add" that allows the user to decide if scripted commands should run synchronously or asynchronously (which can make a difference in how events are handled)
b) clears up several error messages
c) adds a new --allow-reload (-r) setting for "command script import" that allows the user to reload a module even if it has already been imported before
d) allows filename completion for "command script import" (much like what happens for "target create")
e) prevents "command script add" from replacing built-in commands with scripted commands
f) changes AddUserCommand() to take an std::string instead of a const char* (for performance reasons)
plus, it fixes an issue in "type summary add" command handling which caused several test suite errors
llvm-svn: 144035
Joel Dillon that fixed 64 debugging for Linux.
I also added a patch to fix up the ProcessLinux::DoLaunch() to be up to date.
I wasn't able to verify it compiles, but it should b really close.
llvm-svn: 143772
C++ vtables, fixing a record layout problem in the
expression parser.
Also fixed various problems with the generation
and unpacking of llvm.zip given our new better
handling of multiple architectures in the LLVM
build.
(And added a log message that will hopefully catch
record layout problems in the future.)
llvm-svn: 143741
we often nuke our "build" folder so we can do clean builds. This way if you
are building your own LLVM you won't have to rebuild LLVM when you do remove
your build folder. The new location for the LLVM build is:
lldb/llvm-build
llvm-svn: 143713
- If you download and build the sources in the Xcode project, x86_64 builds
by default using the "llvm.zip" checkpointed LLVM.
- If you delete the "lldb/llvm.zip" and the "lldb/llvm" folder, and build the
Xcode project will download the right LLVM sources and build them from
scratch
- If you have a "lldb/llvm" folder already that contains a "lldb/llvm/lib"
directory, we will use the sources you have placed in the LLDB directory.
Python can now be disabled for platforms that don't support it.
Changed the way the libllvmclang.a files get used. They now all get built into
arch specific directories and never get merged into universal binaries as this
was causing issues where you would have to go and delete the file if you wanted
to build an extra architecture slice.
llvm-svn: 143678
target is stopped in a C++ or Objective-C method
but the "self" pointer's valid range actually
doesn't cover the current location. Before, that
was confusing Clang to the point where it crashed;
now, we sanity-check and fall back to pretending
we're in a C function if "self" or "this" isn't
available.
llvm-svn: 143676
Greps and returns the first svn log entry containing a line matching the regular
expression pattern passed as the only arg.
Example:
svn log -v | grep-svn-log.py '^ D.+why_are_you_missing.h$'
llvm-svn: 143671
on internal only (public API hasn't changed) to simplify the paramter list
to the launch calls down into just one argument. Also all of the argument,
envronment and stdio things are now handled in a much more centralized fashion.
llvm-svn: 143656
IRInterpreter to get the value, not the location,
of references. The location of a reference has
type T&&, which is meaningless to Clang.
llvm-svn: 143592
allows us to set __attribute__ ((used)) on expressions
that masquerade as methods. When we are stopped in
classes in anonymous namespaces, this fix (and enabling
__attribute__ ((used)) on the method) will allow
expressions to run.
llvm-svn: 143560
Fixed an issue where the DWARF might mention that a class has a constructor
(default, copy or move), destructor, or an assignment operator (copy or move)
and it might not have an actual implementation in your code. Then you try and
use this struct or class in an expression and the JIT would ask for the
address of these methods that were in the declaration, yet there are none.
We now "do the right thing" for trivial ctors, dtors and assignment operators
by telling the methods that they are are defaulted and trivial, and clang will
then just do all of the work with builtins!
llvm-svn: 143528
generated special member functions (constructors,
destructors, etc.) for classes that don't really have
them. We needed to mark these as artificial to reflect
the debug information; this bug does that for
constructors and destructors.
The "etc." case (certain assignment operators, mostly)
remains to be fixed.
llvm-svn: 143526
correctly, and added a testcase to check that it works.
The main problem here is that Objective-C class method
selectors are external references stored in a special
data structure in the LLVM IR module for an expression.
I just had to extract them and ensure that the real
class object locations were properly resolved.
llvm-svn: 143520
method as __attribute__ ((used)) when adding it to a
class. This functionality is useful when stopped in
anonymous namespaces: expressions attached to classes
in anonymous namespaces are typically elided by Clang's
CodeGen because they have no namespaces are intended
not to be externally visible. __attribute__ ((used))
forces CodeGen to emit the function.
Right now, __attribute__ ((used)) causes the JIT not to
emit the function, so we're not enabling it until we
fix that.
llvm-svn: 143469
RegisterContextLLDBs it contains.
Previously RegisterContextLLDB objects had a pointer to their "next"
frame down the stack. e.g. stack starts at frame 0; frame 3 has a
pointer to frame 2. This is used to retreive callee saved register
values. When debugging an inferior that has blown out its own stack,
however, this could result in lldb blowing out its own stack while
recursing down to retrieve register values.
RegisterContextLLDB no longer has a pointer to its next frame; it
has a reference to the UnwindLLDB which contains it. When it needs
to retrieve a reg value, it asks the UnwindLLDB for that reg value
and UnwindLLDB iterates through the frames until it finds a location.
llvm-svn: 143423
"object borked"... Also made the error when the checker fails reflect this fact rather than
report a crash at 0x0.
Also a little cleanup:
- StopInfoMachException had a redundant copy of the description string.
- ThreadPlanCallFunction had a redundant copy of the thread, and had a
copy of the process that it didn't really need.
llvm-svn: 143419