Utilize the previous move of MVT to a separate header for all trivial
cases (that don't need any further restructuring).
Reviewed By: Tim Northover
llvm-svn: 204003
when used with symbolic disassembly, add a check that the operand
is an immediate and has not been symbolicated to MCExpr operand.
I’m trying to enable the ‘C’ disassembly API option
LLVMDisassembler_Option_SetInstrComments for darwin’s
otool(1) that uses the llvm disassembler API. The problem is
that the disassembler API can change an immediate operand to
an MCExpr operand if it symbolicates it with the call backs.
And if it does the code in llvm::EmitAnyX86InstComments()
will crash when it assumes these operands are immediates.
The fix for this is very straight forward to just protect the call
to getImm() with a check of isImm(). So if the immediate for
an instruction is symbolicated it simply doesn’t get the X86
verbose assembly comments:
% otool -tV test_asm.o
test_asm.o:
(__TEXT,__text) section
_t1:
0000000000000000 vpshufd $_t1, %xmm1, %xmm0
0000000000000005 retq
0000000000000006 nopw %cs:_t1(%rax,%rax)
_t2:
0000000000000010 vpshufd $-0x1, %xmm0, %xmm0 ## xmm0 = xmm0[3,3,3,3]
0000000000000015 retq
0000000000000016 nopw %cs:_t1(%rax,%rax)
_t3:
0000000000000020 vpshufd $_t1, %xmm1, %xmm0
0000000000000025 retq
0000000000000026 nopw %cs:_t1(%rax,%rax)
_t4:
0000000000000030 vpshufd $0x2d, %xmm0, %xmm0 ## xmm0 = xmm0[1,3,2,0]
0000000000000035 retq
The fact that the immediate $0x0 is being symbolicated at
all in this case is a different problem which my next patch
will address.
rdar://10989286
llvm-svn: 199697
vectors. It operates on 128-bit elements instead of regular scalar
types. Recognize shuffles that are suitable for VPERM2F128 and teach
the x86 legalizer how to handle them.
llvm-svn: 137519
instruction introduced in AVX, which can operate on 128 and 256-bit vectors.
It considers a 256-bit vector as two independent 128-bit lanes. It can permute
any 32 or 64 elements inside a lane, and restricts the second lane to
have the same permutation of the first one. With the improved splat support
introduced early today, adding codegen for this instruction enable more
efficient 256-bit code:
Instead of:
vextractf128 $0, %ymm0, %xmm0
punpcklbw %xmm0, %xmm0
punpckhbw %xmm0, %xmm0
vinsertf128 $0, %xmm0, %ymm0, %ymm1
vinsertf128 $1, %xmm0, %ymm1, %ymm0
vextractf128 $1, %ymm0, %xmm1
shufps $1, %xmm1, %xmm1
movss %xmm1, 28(%rsp)
movss %xmm1, 24(%rsp)
movss %xmm1, 20(%rsp)
movss %xmm1, 16(%rsp)
vextractf128 $0, %ymm0, %xmm0
shufps $1, %xmm0, %xmm0
movss %xmm0, 12(%rsp)
movss %xmm0, 8(%rsp)
movss %xmm0, 4(%rsp)
movss %xmm0, (%rsp)
vmovaps (%rsp), %ymm0
We get:
vextractf128 $0, %ymm0, %xmm0
punpcklbw %xmm0, %xmm0
punpckhbw %xmm0, %xmm0
vinsertf128 $0, %xmm0, %ymm0, %ymm1
vinsertf128 $1, %xmm0, %ymm1, %ymm0
vpermilps $85, %ymm0, %ymm0
llvm-svn: 135662
and 256-bit forms. Because the number of elements in a vector
does not determine the vector type (4 elements could be v4f32 or
v4f64), pass the full type of the vector to decode routines.
llvm-svn: 126664
(LLVMX86Utils.a) to break cyclic library dependencies between
LLVMX86CodeGen.a and LLVMX86AsmParser.a. Previously this code was in
a header file and marked static but AVX requires some additional
functionality here that won't be used by all clients. Since including
unused static functions causes a gcc compiler warning, keeping it as a
header would break builds that use -Werror. Putting this in its own
library solves both problems at once.
llvm-svn: 125765
been MC-ized for assembly printing. MSP430 is mostly so, but still has the
asm printer and lowering code in the printer subdir for the moment.
llvm-svn: 115360