Commit Graph

1295 Commits

Author SHA1 Message Date
Simon Pilgrim c63f93a197 [CostModel][X86][XOP] Improve costs for XOP shuffles
VPPERM/VPERMIL2PD/VPERMIL2PS all provide more effective 2-input shuffles than regular AVX instructions

llvm-svn: 311005
2017-08-16 13:50:20 +00:00
Jakub Kuderski 638c085d07 [Dominators] Include infinite loops in PostDominatorTree
Summary:
This patch teaches PostDominatorTree about infinite loops. It is built on top of D29705 by @dberlin which includes a very detailed motivation for this change.

What's new is that the patch also teaches the incremental updater how to deal with reverse-unreachable regions and how to properly maintain and verify tree roots. Before that, the incremental algorithm sometimes ended up preserving reverse-unreachable regions after updates that wouldn't appear in the tree if it was constructed from scratch on the same CFG.

This patch makes the following assumptions:
- A sequence of updates should produce the same tree as a recalculating it.
- Any sequence of the same updates should lead to the same tree.
- Siblings and roots are unordered.

The last two properties are essential to efficiently perform batch updates in the future.
When it comes to the first one, we can decide later that the consistency between freshly built tree and an updated one doesn't matter match, as there are many correct ways to pick roots in infinite loops, and to relax this assumption. That should enable us to recalculate postdominators less frequently.

This patch is pretty conservative when it comes to incremental updates on reverse-unreachable regions and ends up recalculating the whole tree in many cases. It should be possible to improve the performance in many cases, if we decide that it's important enough.
That being said, my experiments showed that reverse-unreachable are very rare in the IR emitted by clang when bootstrapping  clang. Here are the statistics I collected by analyzing IR between passes and after each removePredecessor call:

```
# functions:  52283
# samples:  337609
# reverse unreachable BBs:  216022
# BBs:  247840796
Percent reverse-unreachable:  0.08716159869015269 %
Max(PercRevUnreachable) in a function:  87.58620689655172 %
# > 25 % samples:  471 ( 0.1395104988314885 % samples )
... in 145 ( 0.27733680163724345 % functions )
```

Most of the reverse-unreachable regions come from invalid IR where it wouldn't be possible to construct a PostDomTree anyway.

I would like to commit this patch in the next week in order to be able to complete the work that depends on it before the end of my internship, so please don't wait long to voice your concerns :).

Reviewers: dberlin, sanjoy, grosser, brzycki, davide, chandlerc, hfinkel

Reviewed By: dberlin

Subscribers: nhaehnle, javed.absar, kparzysz, uabelho, jlebar, hiraditya, llvm-commits, dberlin, david2050

Differential Revision: https://reviews.llvm.org/D35851

llvm-svn: 310940
2017-08-15 18:14:57 +00:00
Hal Finkel b03dd4be70 [ValueTracking] Don't delete assumes of side-effectful instructions
ValueTracking has to strike a balance when attempting to propagate information
backwards from assumes, because if the information is trivially propagated
backwards, it can appear to LLVM that the assumption is known to be true, and
therefore can be removed.

This is sound (because an assumption has no semantic effect except for causing
UB), but prevents the assume from allowing further optimizations.

The isEphemeralValueOf check exists to try and prevent this issue by not
removing the source of an assumption. This tries to make it a little bit more
general to handle the case of side-effectful instructions, such as in

  %0 = call i1 @get_val()
  %1 = xor i1 %0, true
  call void @llvm.assume(i1 %1)

Patch by Ariel Ben-Yehuda, thanks!

Differential Revision: https://reviews.llvm.org/D36590

llvm-svn: 310859
2017-08-14 17:11:43 +00:00
Chandler Carruth 37c7b08710 [ValueTracking] Revert r310583 which enabled functionality that still is
causing compile time issues.

Moreover, the patch *deleted* the flag in addition to changing the
default, and links to a code review that doesn't even discuss the flag
and just has an update to a Clang test case.

I've followed up on the commit thread to ask for numbers on compile time
at this point, leaving the flag in place until things stabilize, and
pointing at specific code that seems to exhibit excessive compile time
with this patch.

Original commit message for r310583:
"""
[ValueTracking] Enabling ValueTracking patch by default (recommit). Part 2.

The original patch was an improvement to IR ValueTracking on
non-negative integers. It has been checked in to trunk (D18777,
r284022). But was disabled by default due to performance regressions.
Perf impact has improved. The patch would be enabled by default.
""""

llvm-svn: 310816
2017-08-14 07:03:24 +00:00
Simon Pilgrim b59c2d9d73 [CostModel][X86] Add SSE2 two-src shuffle costs
llvm-svn: 310654
2017-08-10 19:32:35 +00:00
Simon Pilgrim 7354531b82 [CostModel][X86] Add avx1 two-src shuffle costs
llvm-svn: 310650
2017-08-10 19:02:51 +00:00
Simon Pilgrim ac2e50a4ca [CostModel][X86] Add avx2 two-src shuffle costs
llvm-svn: 310645
2017-08-10 18:29:34 +00:00
Simon Pilgrim 2f529412e1 [CostModel][X86] Extend two src shuffle cost tests
Cover most 128/256/512/1024-bit cases for vXf64/vXi64, vXf32/vXi32, vXi16 + vXi8

llvm-svn: 310641
2017-08-10 18:02:45 +00:00
Simon Pilgrim fe67612eba [CostModel][X86] Add avx512vbmi broadcast/reverse/single-src shuffle cost tests
llvm-svn: 310633
2017-08-10 17:33:25 +00:00
Simon Pilgrim 702e5fa391 [CostModel][X86] Improve single src shuffle costs
Add missing SK_PermuteSingleSrc costs for AVX2 targets and earlier, also added some of the simpler SK_PermuteTwoSrc costs to support splitting of SK_PermuteSingleSrc shuffles

llvm-svn: 310632
2017-08-10 17:27:20 +00:00
Simon Pilgrim 419215abb7 [CostModel][X86] Added v2f64/v2i64 single src shuffle model tests
Fixed label checks for all prefixes

llvm-svn: 310606
2017-08-10 15:25:08 +00:00
Nikolai Bozhenov d97136c182 [ValueTracking] Enabling ValueTracking patch by default (recommit). Part 2.
The original patch was an improvement to IR ValueTracking on non-negative
integers. It has been checked in to trunk (D18777, r284022). But was disabled by
default due to performance regressions.
Perf impact has improved. The patch would be enabled by default.
 
Reviewers: reames, hfinkel
 
Differential Revision: https://reviews.llvm.org/D34101
 
Patch by: Olga Chupina <olga.chupina@intel.com>

llvm-svn: 310583
2017-08-10 11:24:57 +00:00
Amara Emerson 56dca4e3ca [SCEV] Preserve NSW information for sext(subtract).
Pushes the sext onto the operands of a Sub if NSW is present.
Also adds support for propagating the nowrap flags of the
llvm.ssub.with.overflow intrinsic during analysis.

Differential Revision: https://reviews.llvm.org/D35256

llvm-svn: 310117
2017-08-04 20:19:46 +00:00
Max Kazantsev 2cb3653404 [SCEV] Re-enable "Cache results of computeExitLimit"
The patch rL309080 was reverted because it did not clean up the cache on "forgetValue"
method call. This patch re-enables this change, adds the missing check and introduces
two new unit tests that make sure that the cache is cleaned properly.

Differential Revision: https://reviews.llvm.org/D36087

llvm-svn: 309925
2017-08-03 08:41:30 +00:00
Tobias Grosser 670a5d88a3 [tests] Do not emity binary bitcode to stdout in RegionInfo tests
llvm-svn: 309485
2017-07-29 09:58:43 +00:00
Sanjoy Das 843ab57457 Revert "[SCEV] Cache results of computeExitLimit"
This reverts commit r309080.  The patch needs to clear out the
ScalarEvolution::ExitLimits cache in forgetMemoizedResults.

I've replied on the commit thread for the patch with more details.

llvm-svn: 309357
2017-07-28 03:25:07 +00:00
Davide Italiano 01cb947abb [JumpThreading] Add an option to dump LazyValueInfo after the run.
Differential Revision:  https://reviews.llvm.org/D35973

llvm-svn: 309353
2017-07-28 02:57:43 +00:00
Max Kazantsev f282aed428 [SCEV] Cache results of computeExitLimit
This patch adds a cache for computeExitLimit to save compilation time. A lot of examples of
tests that take extensive time to compile are attached to the bug 33494.

Differential Revision: https://reviews.llvm.org/D35827

llvm-svn: 309080
2017-07-26 04:55:54 +00:00
Max Kazantsev 0e9e0796f4 [SCEV] Limit max size of AddRecExpr during evolving
When SCEV calculates product of two SCEVAddRecs from the same loop, it
tries to combine them into one big AddRecExpr. If the sizes of the initial
SCEVs were `S1` and `S2`, the size of their product is `S1 + S2 - 1`, and every
operand of the resulting SCEV is combined from operands of initial SCEV and
has much higher complexity than they have.

As result, if we try to calculate something like:
  %x1 = {a,+,b}
  %x2 = mul i32 %x1, %x1
  %x3 = mul i32 %x2, %x1
  %x4 = mul i32 %x3, %x2
  ...
The size of such SCEVs grows as `2^N`, and the arguments
become more and more complex as we go forth. This leads
to long compilation and huge memory consumption.

This patch sets a limit after which we don't try to combine two
`SCEVAddRecExpr`s into one. By default, max allowed size of the
resulting AddRecExpr is set to 16.

Differential Revision: https://reviews.llvm.org/D35664

llvm-svn: 308847
2017-07-23 15:40:19 +00:00
Ulrich Weigand 33435c4c9c [SystemZ] Add support for IBM z14 processor (2/3)
This adds support for the new 32-bit vector float instructions of z14.
This includes:
- Enabling the instructions for the assembler/disassembler.
- CodeGen for the instructions, including new LLVM intrinsics.
- Scheduler description support for the instructions.
- Update to the vector cost function calculations.

In general, CodeGen support for the new v4f32 instructions closely
matches support for the existing v2f64 instructions.

llvm-svn: 308195
2017-07-17 17:42:48 +00:00
Kamil Rytarowski cce21c1dfe Make shell redirection construct portable
Summary:
NetBSD shell sh(1) does not support ">& /dev/null" construct.
This is bashism. The portable and POSIX solution is to use:
"> /dev/null 2>&1".

This change fixes 22 Unexpected Failures on NetBSD/amd64
for the "check-llvm" target.

Sponsored by <The NetBSD Foundation>

Reviewers: joerg, dim, rnk

Reviewed By: joerg, rnk

Subscribers: rnk, davide, llvm-commits

Differential Revision: https://reviews.llvm.org/D35277

llvm-svn: 307789
2017-07-12 13:24:46 +00:00
Max Kazantsev b9edcbcb1d Re-enable "[IndVars] Canonicalize comparisons between non-negative values and indvars"
The patch was reverted due to a bug. The bug was that if the IV is the 2nd operand of the icmp
instruction, then the "Pred" variable gets swapped and differs from the instruction's predicate.
In this patch we use the original predicate to do the transformation.

Also added a test case that exercises this situation.

Differentian Revision: https://reviews.llvm.org/D35107

llvm-svn: 307477
2017-07-08 17:17:30 +00:00
Max Kazantsev 98838527c6 Revert "Revert "Revert "[IndVars] Canonicalize comparisons between non-negative values and indvars"""
It appears that the problem is still there. Needs more analysis to understand why
SaturatedMultiply test fails.

llvm-svn: 307249
2017-07-06 10:47:13 +00:00
Max Kazantsev c8db20b78c Revert "Revert "[IndVars] Canonicalize comparisons between non-negative values and indvars""
It seems that the patch was reverted by mistake. Clang testing showed failure of the
MathExtras.SaturatingMultiply test, however I was unable to reproduce the issue on the
fresh code base and was able to confirm that the transformation introduced by the change
does not happen in the said test. This gives a strong confidence that the actual reason of
the failure of the initial patch was somewhere else, and that problem now seems to be
fixed. Re-submitting the change to confirm that.

llvm-svn: 307244
2017-07-06 09:57:41 +00:00
Brendon Cahoon cb8c7b912d [DependenceAnalysis] Make sure base objects are the same when comparing GEPs
The dependence analysis was returning incorrect information when using the GEPs
to compute dependences. The analysis uses the GEP indices under certain
conditions, but was doing it incorrectly when the base objects of the GEP are
aliases, but pointing to different locations in the same array.

This patch adds another check for the base objects. If the base pointer SCEVs
are not equal, then the dependence analysis should fall back on the path
that uses the whole SCEV for the dependence check. This fixes PR33567.

Differential Revision: https://reviews.llvm.org/D34702

llvm-svn: 307203
2017-07-05 21:35:47 +00:00
Max Kazantsev ebe56283bc Revert "[IndVars] Canonicalize comparisons between non-negative values and indvars"
This patch seems to cause failures of test MathExtras.SaturatingMultiply on
multiple buildbots. Reverting until the reason of that is clarified.

Differential Revision: https://reviews.llvm.org/rL307126

llvm-svn: 307135
2017-07-05 09:44:41 +00:00
Max Kazantsev 80bc4a5554 [IndVars] Canonicalize comparisons between non-negative values and indvars
-If there is a IndVar which is known to be non-negative, and there is a value which is also non-negative,
then signed and unsigned comparisons between them produce the same result. Both of those can be
seen in the same loop. To allow other optimizations to simplify them, we turn all instructions like

  %c = icmp slt i32 %iv, %b
to

  %c = icmp ult i32 %iv, %b

if both %iv and %b are known to be non-negative.

Differential Revision: https://reviews.llvm.org/D34979

llvm-svn: 307126
2017-07-05 06:38:49 +00:00
Mohammed Agabaria eb09a810e6 [X86][CM] update add\sub costs of vectors of 64 in X86\SLM arch
this patch updates the cost of addq\subq (add\subtract of vectors of 64bits)
based on the performance numbers of SLM arch.

Differential Revision: https://reviews.llvm.org/D33983

llvm-svn: 306974
2017-07-02 12:16:15 +00:00
Max Kazantsev 8d0322e612 [SCEV] Use depth limit instead of local cache for SExt and ZExt
In rL300494 there was an attempt to deal with excessive compile time on
invocations of getSign/ZeroExtExpr using local caching. This approach only
helps if we request the same SCEV multiple times throughout recursion. But
in the bug PR33431 we see a case where we request different values all the time,
so caching does not help and the size of the cache grows enormously.

In this patch we remove the local cache for this methods and add the recursion
depth limit instead, as we do for arithmetics. This gives us a guarantee that the
invocation sequence is limited and reasonably short.

Differential Revision: https://reviews.llvm.org/D34273

llvm-svn: 306785
2017-06-30 05:04:09 +00:00
Jakub Kuderski 837755cf8b [Dominators] Don't compute DFS InOut numbers eagerly.
Summary:
DFS InOut numbers currently get eagerly computer upon DomTree construction. They are only needed to answer dome dominance queries and they get invalidated by updates and recalculations. Because of that, it is faster in practice to compute them lazily when they are actually needed.

Clang built without this patch takes 6m 45s to boostrap on my machine, and with the patch applied 6m 38s.

Reviewers: sanjoy, dberlin, chandlerc

Reviewed By: dberlin

Subscribers: davide, llvm-commits

Differential Revision: https://reviews.llvm.org/D34296

llvm-svn: 306778
2017-06-30 01:28:21 +00:00
Alexandre Isoard 41044876fc Reverting r306695 while investigating failing test case.
Failing test case:
    Transforms/LoopVectorize.iv_outside_user.ll

llvm-svn: 306723
2017-06-29 18:48:56 +00:00
Alexandre Isoard aa29afc756 ScalarEvolution: Add URem support
In LLVM IR the following code:

    %r = urem <ty> %t, %b

is equivalent to:

    %q = udiv <ty> %t, %b
    %s = mul <ty> nuw %q, %b
    %r = sub <ty> nuw %t, %q ; (t / b) * b + (t % b) = t

As UDiv, Mul and Sub are already supported by SCEV, URem can be
implemented with minimal effort this way.

Note: While SRem and SDiv are also related this way, SCEV does not
provides SDiv yet.

llvm-svn: 306695
2017-06-29 16:29:04 +00:00
Dorit Nuzman e0e0f1ddb0 [AVX2] [TTI CostModel] Add cost of interleaved loads/stores for AVX2
The cost of an interleaved access was only implemented for AVX512. For other
X86 targets an overly conservative Base cost was returned, resulting in
avoiding vectorization where it is actually profitable to vectorize.
This patch starts to add costs for AVX2 for most prominent cases of
interleaved accesses (stride 3,4 chars, for now).

Note1: Improvements of up to ~4x were observed in some of EEMBC's rgb
workloads; There is also a known issue of 15-30% degradations on some of these
workloads, associated with an interleaved access followed by type
promotion/widening; the resulting shuffle sequence is currently inefficient and
will be improved by a series of patches that extend the X86InterleavedAccess pass
(such as D34601 and more to follow).

Note 2: The costs in this patch do not reflect port pressure penalties which can
be very dominant in the case of interleaved accesses since most of the shuffle
operations are restricted to a single port. Further tuning, that may incorporate
these considerations, will be done on top of the upcoming improved shuffle
sequences (that is, along with the abovementioned work to extend
X86InterleavedAccess pass).


Differential Revision: https://reviews.llvm.org/D34023

llvm-svn: 306238
2017-06-25 08:26:25 +00:00
Michael Kruse 47f856095a [BasicAA] Use MayAlias instead of PartialAlias for fallback.
Using various methods, BasicAA tries to determine whether two
GetElementPtr memory locations alias when its base pointers are known
to be equal. When none of its heuristics are applicable, it falls back
to PartialAlias to, according to a comment, protect TBAA making a wrong
decision in case of unions and malloc. PartialAlias is not correct,
because a PartialAlias result implies that some, but not all, bytes
overlap which is not necessarily the case here.

AAResults returns the first analysis result that is not MayAlias.
BasicAA is always the first alias analysis. When it returns
PartialAlias, no other analysis is queried to give a more exact result
(which was the intention of returning PartialAlias instead of MayAlias).
For instance, ScopedAA could return a more accurate result.

The PartialAlias hack was introduced in r131781 (and re-applied in
r132632 after some reverts) to fix llvm.org/PR9971 where TBAA returns a
wrong NoAlias result due to a union. A test case for the malloc case
mentioned in the comment was not provided and I don't think it is
affected since it returns an omnipotent char anyway.

Since r303851 (https://reviews.llvm.org/D33328) clang does emit specific
TBAA for unions anymore (but "omnipotent char" instead). Hence, the
PartialAlias workaround is not required anymore.

This patch passes the test-suite and check-llvm/check-clang of a
self-hoisted build on x64.

Reviewed By: hfinkel

Differential Revision: https://reviews.llvm.org/D34318

llvm-svn: 305938
2017-06-21 18:25:37 +00:00
Simon Pilgrim 68204b83a7 [CostModel][X86] Add scalar arithmetic cost tests
llvm-svn: 305810
2017-06-20 17:10:27 +00:00
Simon Pilgrim 36c17935e4 [CostModel][X86] Declare costs variables based on type
The alphabetical progression isn't that useful

llvm-svn: 305808
2017-06-20 17:04:46 +00:00
Anna Thomas 7949f4529a [JumpThreading][LVI] Invalidate LVI information after blocks are merged
Summary:
After a single predecessor is merged into a basic block, we need to invalidate
the LVI information for the new merged block, when LVI is not provably true for
all of instructions in the new block.
The test cases added show the correct LVI information using the LVI printer
pass.

Reviewers: reames, dberlin, davide, sanjoy

Reviewed by: dberlin, davide

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D34108

llvm-svn: 305699
2017-06-19 15:23:33 +00:00
Max Kazantsev dc80366d52 [ScalarEvolution] Apply Depth limit to getMulExpr
This is a fix for PR33292 that shows a case of extremely long compilation
of a single .c file with clang, with most time spent within SCEV.

We have a mechanism of limiting recursion depth for getAddExpr to avoid
long analysis in SCEV. However, there are calls from getAddExpr to getMulExpr
and back that do not propagate the info about depth. As result of this, a chain

  getAddExpr -> ... .> getAddExpr -> getMulExpr -> getAddExpr -> ... -> getAddExpr

can be extremely long, with every segment of getAddExpr's being up to max depth long.
This leads either to long compilation or crash by stack overflow. We face this situation while
analyzing big SCEVs in the test of PR33292.

This patch applies the same limit on max expression depth for getAddExpr and getMulExpr.

Differential Revision: https://reviews.llvm.org/D33984

llvm-svn: 305463
2017-06-15 11:48:21 +00:00
John Brawn da4a68a1d2 [BPI] Don't assume that strcmp returning >0 is more likely than <0
The zero heuristic assumes that integers are more likely positive than negative,
but this also has the effect of assuming that strcmp return values are more
likely positive than negative. Given that for nonzero strcmp return values it's
the ordering of arguments that determines the sign of the result there's no
reason to assume that's true.

Fix this by inspecting the LHS of the compare and using TargetLibraryInfo to
decide if it's strcmp-like, and if so only assume that nonzero is more likely
than zero i.e. strings are more often different than the same. This causes a
slight code generation change in the spec2006 benchmark 403.gcc, but with no
noticeable performance impact. The intent of this patch is to allow better
optimisation of dhrystone on Cortex-M cpus, but currently it won't as there are
also some changes that need to be made to if-conversion.

Differential Revision: https://reviews.llvm.org/D33934

llvm-svn: 304970
2017-06-08 09:44:40 +00:00
Anna Thomas 4acfc7e16e [LVI Printer] Rely on the LVI analysis functions rather than the LVI cache
Summary:
LVIPrinter pass was previously relying on the LVICache. We now directly call the
the LVI functions which solves the value if the LVI information is not already
available in the cache. This has 2 benefits over the printing of LVI cache:
1. higher coverage (i.e. catches errors) in LVI code when cache value is
invalidated.
2. relies on the core functions, and not dependent on the LVI cache (which may
be scrapped at some point).
It would still catch any cache invalidation errors, since we first go through
the cache.

Reviewers: reames, dberlin, sanjoy

Reviewed by: reames

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D32135

llvm-svn: 304819
2017-06-06 19:25:31 +00:00
Joey Gouly 61eaa63b65 [InstSimplify] Constant fold the new GEP in SimplifyGEPInst.
llvm-svn: 304784
2017-06-06 10:17:14 +00:00
George Burgess IV 0a7b989036 [CFLAA] Add missing break; note things are broken.
Thanks to Galina Kistanova for finding the missing break!

When trying to make a test for this, I realized our logic for handling
extractvalue/insertvalue/... is somewhat broken. This makes constructing
a test-case for this missing break nontrivial.

llvm-svn: 304275
2017-05-31 02:35:26 +00:00
Tobias Grosser e3684d0b84 [SCEV] Assume parameters coming from function calls contain IVs
The optimistic delinearization implemented in LLVM detects array sizes by
looking for non-linear products between parameters and induction variables.
In OpenCL code, such products often look like:

  A[get_global_id(0) * N + get_global_id(1)]

Hence, the IV is hidden in the get_global_id() call and consequently
delinearization would fail as no induction variable is available that helps
us to identify N as array size parameter.

We now use a very simple heuristic to change this. We assume that each parameter
that comes directly from a function call is a hidden induction variable. As
a result, we can delinearize the access above to:

  A[get_global_id(0)][get_global_id(1]

llvm-svn: 304073
2017-05-27 15:17:49 +00:00
Max Kazantsev 41450329f7 Re-enable "[SCEV] Do not fold dominated SCEVUnknown into AddRecExpr start"
The patch rL303730 was reverted because test lsr-expand-quadratic.ll failed on
many non-X86 configs with this patch. The reason of this is that the patch
makes a correctless fix that changes optimizer's behavior for this test.
Without the change, LSR was making an overconfident simplification basing on a
wrong SCEV. Apparently it did not need the IV analysis to do this. With the
change, it chose a different way to simplify (that wasn't so confident), and
this way required the IV analysis. Now, following the right execution path,
LSR tries to make a transformation relying on IV Users analysis. This analysis
is target-dependent due to this code:

  // LSR is not APInt clean, do not touch integers bigger than 64-bits.
  // Also avoid creating IVs of non-native types. For example, we don't want a
  // 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
  uint64_t Width = SE->getTypeSizeInBits(I->getType());
  if (Width > 64 || !DL.isLegalInteger(Width))
    return false;

To make a proper transformation in this test case, the type i32 needs to be
legal for the specified data layout. When the test runs on some non-X86
configuration (e.g. pure ARM 64), opt gets confused by the specified target
and does not use it, rejecting the specified data layout as well. Instead,
it uses some default layout that does not treat i32 as a legal type
(currently the layout that is used when it is not specified does not have
legal types at all). As result, the transformation we expect to happen does
not happen for this test.

This re-enabling patch does not have any source code changes compared to the
original patch rL303730. The only difference is that the failing test is
moved to X86 directory and now has requirement of running on x86 only to comply
with the specified target triple and data layout.

Differential Revision: https://reviews.llvm.org/D33543

llvm-svn: 303971
2017-05-26 06:47:04 +00:00
Matthew Simpson 6349380fa4 Revert r291254: [AArch64] Reduce vector insert/extract cost for Falkor
The default vector insert/extract cost is more profitable on Falkor than the
reduced cost.

llvm-svn: 303771
2017-05-24 16:48:39 +00:00
Diana Picus 183863fc3b Revert "[SCEV] Do not fold dominated SCEVUnknown into AddRecExpr start"
This reverts commit r303730 because it broke all the buildbots.

llvm-svn: 303747
2017-05-24 14:16:04 +00:00
Max Kazantsev 13e016bf48 [SCEV] Do not fold dominated SCEVUnknown into AddRecExpr start
When folding arguments of AddExpr or MulExpr with recurrences, we rely on the fact that
the loop of our base recurrency is the bottom-lost in terms of domination. This assumption
may be broken by an expression which is treated as invariant, and which depends on a complex
Phi for which SCEVUnknown was created. If such Phi is a loop Phi, and this loop is lower than
the chosen AddRecExpr's loop, it is invalid to fold our expression with the recurrence.

Another reason why it might be invalid to fold SCEVUnknown into Phi start value is that unlike
other SCEVs, SCEVUnknown are sometimes position-bound. For example, here:

for (...) { // loop
  phi = {A,+,B}
}
X = load ...
Folding phi + X into {A+X,+,B}<loop> actually makes no sense, because X does not exist and cannot
exist while we are iterating in loop (this memory can be even not allocated and not filled by this moment).
It is only valid to make such folding if X is defined before the loop. In this case the recurrence {A+X,+,B}<loop>
may be existant.

This patch prohibits folding of SCEVUnknown (and those who use them) into the start value of an AddRecExpr,
if this instruction is dominated by the loop. Merging the dominating unknown values is still valid. Some tests that
relied on the fact that some SCEVUnknown should be folded into AddRec's are changed so that they no longer
expect such behavior.

llvm-svn: 303730
2017-05-24 08:52:18 +00:00
Sanjoy Das 036dda25a5 [SCEV] Clarify behavior around max backedge taken count
This is a re-application of a r303497 that was reverted in r303498.
I thought it had broken a bot when it had not (the breakage did not
go away with the revert).

This change makes the split between the "exact" backedge taken count
and the "maximum" backedge taken count a bit more obvious.  Both of
these are upper bounds on the number of times the loop header
executes (since SCEV does not account for most kinds of abnormal
control flow), but the latter is guaranteed to be a constant.

There were a few places where the max backedge taken count *was* a
non-constant; I've changed those to compute constants instead.

At this point, I'm not sure if the constant max backedge count can be
computed by calling `getUnsignedRange(Exact).getUnsignedMax()` without
losing precision.  If it can, we can simplify even further by making
`getMaxBackedgeTakenCount` a thin wrapper around
`getBackedgeTakenCount` and `getUnsignedRange`.

llvm-svn: 303531
2017-05-22 06:46:04 +00:00
Sanjoy Das 8963650cfa Revert "[SCEV] Clarify behavior around max backedge taken count"
This reverts commit r303497 since it breaks the msan bootstrap bot:
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-bootstrap/builds/1379/

llvm-svn: 303498
2017-05-21 05:02:12 +00:00
Sanjoy Das 5207168383 [SCEV] Clarify behavior around max backedge taken count
This change makes the split between the "exact" backedge taken count
and the "maximum" backedge taken count a bit more obvious.  Both of
these are upper bounds on the number of times the loop header
executes (since SCEV does not account for most kinds of abnormal
control flow), but the latter is guaranteed to be a constant.

There were a few places where the max backedge taken count *was* a
non-constant; I've changed those to compute constants instead.

At this point, I'm not sure if the constant max backedge count can be
computed by calling `getUnsignedRange(Exact).getUnsignedMax()` without
losing precision.  If it can, we can simplify even further by making
`getMaxBackedgeTakenCount` a thin wrapper around
`getBackedgeTakenCount` and `getUnsignedRange`.

llvm-svn: 303497
2017-05-21 01:47:50 +00:00