This is mostly to test the waters. I'd like to get results from FNT
build bots and other bots running on non-x86 platforms.
This feature has been pretty heavily tested over the last few months by
me, and it fixes several of the execution time regressions caused by the
inlining work by preventing inlining decisions from radically impacting
block layout.
I've seen very large improvements in yacr2 and ackermann benchmarks,
along with the expected noise across all of the benchmark suite whenever
code layout changes. I've analyzed all of the regressions and fixed
them, or found them to be impossible to fix. See my email to llvmdev for
more details.
I'd like for this to be in 3.1 as it complements the inliner changes,
but if any failures are showing up or anyone has concerns, it is just
a flag flip and so can be easily turned off.
I'm switching it on tonight to try and get at least one run through
various folks' performance suites in case SPEC or something else has
serious issues with it. I'll watch bots and revert if anything shows up.
llvm-svn: 154816
registers it defines then interfere with an existing preg live range.
For instance, if we had something like these machine instructions:
BB#0
... = imul ... EFLAGS<imp-def,dead>
test ..., EFLAGS<imp-def>
jcc BB#2 EFLAGS<imp-use>
BB#1
... ; fallthrough to BB#2
BB#2
... ; No code that defines EFLAGS
jcc ... EFLAGS<imp-use>
Machine sink will come along, see that imul implicitly defines EFLAGS, but
because it's "dead", it assumes that it can move imul into BB#2. But when it
does, imul's "dead" imp-def of EFLAGS is raised from the dead (a zombie) and
messes up the condition code for the jump (and pretty much anything else which
relies upon it being correct).
The solution is to know which pregs are live going into a basic block. However,
that information isn't calculated at this point. Nor does the LiveVariables pass
take into account non-allocatable physical registers. In lieu of this, we do a
*very* conservative pass through the basic block to determine if a preg is live
coming out of it.
llvm-svn: 105387
If there exists a use of a build_vector that's the bitwise complement of the mask,
then transform the node to
(and (xor x, (build_vector -1,-1,-1,-1)), (build_vector ~c1,~c2,~c3,~c4)).
Since this transformation is only useful when 1) the given build_vector will
become a load from constpool, and 2) (and (xor x -1), y) matches to a single
instruction, I decided this is appropriate as a x86 specific transformation.
rdar://7323335
llvm-svn: 96389
unfolding loads for hoisting. getOpcodeAfterMemoryUnfold returns the
opcode of the original operation without the load, not the load
itself, MachineLICM needs to know the operand index in order to get
the correct register class. Extend getOpcodeAfterMemoryUnfold to
return this information.
llvm-svn: 85622
physical registers. This is especially critical for the later two since they
start the live interval of a super-register. e.g.
%DO<def> = INSERT_SUBREG %D0<undef>, %S0<kill>, 1
If this instruction is eliminated, the register scavenger will not be happy as
D0 is not defined previously.
This fixes PR5055.
llvm-svn: 82968