<rdar://problem/8959122> illegal register operands for UMULL instruction in cfrac nightly test
I'm stil working on a unit test, but the case is:
rx = movcc rx, r3
r2 = ldr
r2, r3 = umull r2, r2
The anti-dep breaker should not convert this into an illegal instruction:
r2, r2 = umull
llvm-svn: 124932
a) Making it a per call site bonus for functions that we can move from
indirect to direct calls.
b) Reduces the bonus from 500 to 100 per call site.
c) Subtracts the size of the possible newly inlineable call from the
bonus to only add a bonus if we can inline a small function to devirtualize
it.
Also changes the bonus from a positive that's subtracted to a negative
that's added.
Fixes the remainder of rdar://8546196 by reducing the object file size
after inlining by 84%.
llvm-svn: 124916
This allows us to easily support 256-bit operations that don't have
native 256-bit support. This applies to integer operations, certain
types of shuffles and various othher things.
llvm-svn: 124910
If interference reaches the last split point, it is effectively live out and
should be marked as 'MustSpill'.
This can make a difference when the terminator uses a register. There is no way
that register can be reused in the outgoing CFG bundle, even if it isn't live
out.
llvm-svn: 124900
(yes, this is different from R_ARM_CALL)
- Adds a new method getARMBranchTargetOpValue() which handles the
necessary distinction between the conditional and unconditional br/bl
needed for ARM/ELF
At least for ARM mode, the needed fixup for conditional versus unconditional
br/bl is identical, but the ARM docs and existing ARM tools expect this
reloc type...
Added a few FIXME's for future naming fixups in ARMInstrInfo.td
llvm-svn: 124895
A live range cannot be split everywhere in a basic block. A split must go before
the first terminator, and if the variable is live into a landing pad, the split
must happen before the call that can throw.
llvm-svn: 124894
We should not be attempting a region split if it won't lead to at least one
directly allocatable interval. That could cause infinite splitting loops.
llvm-svn: 124893
precisely track pressure on a selection DAG, but we can at least keep
it balanced. This design accounts for various interesting aspects of
selection DAGS: register and subregister copies, glued nodes, dead
nodes, unused registers, etc.
Added SUnit::NumRegDefsLeft and ScheduleDAGSDNodes::RegDefIter.
Note: I disabled PrescheduleNodesWithMultipleUses when register
pressure is enabled, based on no evidence other than I don't think it
makes sense to have both enabled.
llvm-svn: 124853
When the live range is live through a block that doesn't use the register, but
that has interference, region splitting wants to split at the top and bottom of
the basic block.
llvm-svn: 124839
Allow a live range to end with a kill flag, but don't allow a kill flag that
doesn't end the live range.
This makes the machine code verifier more useful during register allocation when
kill flag computation is deferred.
llvm-svn: 124838
If the found value is not live-through the block, we should only add liveness up
to the requested slot index. When the value is live-through, the whole block
should be colored.
Bug found by SSA verification in the machine code verifier.
llvm-svn: 124812
matching EXTRACT_SUBVECTOR to VEXTRACTF128 along with support routines
to examine and translate index values. VINSERTF128 comes next. With
these two in place we can begin supporting more AVX operations as
INSERT/EXTRACT can be used as a fallback when 256-bit support is not
available.
llvm-svn: 124797
auto-simplifier). This has a big impact on Ada code, but not much else.
Unfortunately the impact is mostly negative! This is due to PR9004 (aka
SCCP failing to resolve conditional branch conditions in the destination
blocks of the branch), in which simple correlated expressions are not
resolved but complicated ones are, so simplifying has a bad effect!
llvm-svn: 124788
Reversing the operands allows us to fold, but doesn't force us to. Also, at
this point the DAG is still being optimized, so the check for hasOneUse is not
very precise.
llvm-svn: 124773
The greedy register allocator revealed some problems with the value mapping in
SplitKit. We would sometimes start mapping values before all defs were known,
and that could change a value from a simple 1-1 mapping to a multi-def mapping
that requires ssa update.
The new approach collects all defs and register assignments first without
filling in any live intervals. Only when finish() is called, do we compute
liveness and mapped values. At this time we know with certainty which values map
to multiple values in a split range.
This also has the advantage that we can compute live ranges based on the
remaining uses after rematerializing at split points.
The current implementation has many opportunities for compile time optimization.
llvm-svn: 124765
overflow (nsw flag), which was disabled because it breaks 254.gap. I have
informed the GAP authors of the mistake in their code, and arranged for the
testsuite to use -fwrapv when compiling this benchmark.
llvm-svn: 124746
This makes the job of the later optzn passes easier, allowing the vast amount of
icmp transforms to chew on it.
We transform 840 switches in gcc.c, leading to a 16k byte shrink of the resulting
binary on i386-linux.
The testcase from README.txt now compiles into
decl %edi
cmpl $3, %edi
sbbl %eax, %eax
andl $1, %eax
ret
llvm-svn: 124724
may be useful to understand "none", this is not the place for it. Tweak
the fix to Normalize while there: the fix added in 123990 works correctly,
but I like this way better. Finally, now that Triple understands some
non-trivial environment values, teach the unittests about them.
llvm-svn: 124720
that might have changed been affected by a merge elsewhere will have been
removed from the function set, and it isn't needed for performance because we
call grow() ahead of time to prevent reallocations.
llvm-svn: 124717
the load, then it may be legal to transform the load and store to integer
load and store of the same width.
This is done if the target specified the transformation as profitable. e.g.
On arm, this can transform:
vldr.32 s0, []
vstr.32 s0, []
to
ldr r12, []
str r12, []
rdar://8944252
llvm-svn: 124708
This is similar to the -unroll-threshold option. There should be no change in
behavior when -tail-dup-size is not explicit on the llc command line.
llvm-svn: 124564
to do this and more, but would only do it if X/Y had only one use. Spotted as the
most common missed simplification in SPEC by my auto-simplifier, now that it knows
about nuw/nsw/exact flags. This removes a bunch of multiplications from 447.dealII
and 483.xalancbmk. It also removes a lot from tramp3d-v4, which results in much
more inlining.
llvm-svn: 124560
This happens all the time when a smul is promoted to a larger type.
On x86-64 we now compile "int test(int x) { return x/10; }" into
movslq %edi, %rax
imulq $1717986919, %rax, %rax
movq %rax, %rcx
shrq $63, %rcx
sarq $34, %rax <- used to be "shrq $32, %rax; sarl $2, %eax"
addl %ecx, %eax
This fires 96 times in gcc.c on x86-64.
llvm-svn: 124559
This happens e.g. for code like "X - X%10" where we lower the modulo operation
to a series of multiplies and shifts that are then subtracted from X, leading to
this missed optimization.
llvm-svn: 124532
Modified patch by Adam Preuss.
This builds on the existing framework for block tracing, edge profiling and optimal edge profiling.
See -help-hidden for new flags.
For documentation, see the technical report "Implementation of Path Profiling..." in llvm.org/pubs.
llvm-svn: 124515
benchmarks, and that it can be simplified to X/Y. (In general you can only
simplify (Z*Y)/Y to Z if the multiplication did not overflow; if Z has the
form "X/Y" then this is the case). This patch implements that transform and
moves some Div logic out of instcombine and into InstructionSimplify.
Unfortunately instcombine gets in the way somewhat, since it likes to change
(X/Y)*Y into X-(X rem Y), so I had to teach instcombine about this too.
Finally, thanks to the NSW/NUW flags, sometimes we know directly that "Z*Y"
does not overflow, because the flag says so, so I added that logic too. This
eliminates a bunch of divisions and subtractions in 447.dealII, and has good
effects on some other benchmarks too. It seems to have quite an effect on
tramp3d-v4 but it's hard to say if it's good or bad because inlining decisions
changed, resulting in massive changes all over.
llvm-svn: 124487
rdar://problem/8893967: JM/lencod miscompile at -arch armv7 -mthumb -O3
Added ResurrectKill to remove kill flags after we decide to reused a
physical register. And (hopefully) ensure that we call it in all the
right places.
Sorry, I'm not checking in a unit test given that it's a miscompile I
can't reproduce easily with a toy example. Failures in the rewriter
depend on a series of heuristic decisions maked during one of the many
upstream phases in codegen. This case would require coercing regalloc
to generate a couple of rematerialzations in a way that causes the
scavenger to reuse the same register at just the wrong point.
The general way to test this is to implement kill flags
verification. Then we could have a simple, robust compile-only unit
test. That would be worth doing if the whole pass was not about to
disappear. At this point we focus verification work on the next
generation of regalloc.
llvm-svn: 124442
Linear scan regalloc is currently assuming that any register aliased with
a member of a regclass must also be in at least one regclass. That is not
always true. For example, for X86, RIP is in a regclass but IP is not.
If you're unlucky, this can cause a crash by invalidating the iterator.
llvm-svn: 124365
default implementation for x86, going through the stack in a similr
fashion to how the codegen implements BUILD_VECTOR. Eventually this
will get matched to VINSERTF128 if AVX is available.
llvm-svn: 124307
implementation of EXTRACT_SUBVECTOR for x86, going through the stack
in a similr fashion to how the codegen implements BUILD_VECTOR.
Eventually this will get matched to VEXTRACTF128 if AVX is available.
llvm-svn: 124292
operand being factorized (and erased) could occur several times in Ops,
resulting in freed memory being used when the next occurrence in Ops was
analyzed.
llvm-svn: 124287
merge vector<intptr_t>::push_back() and vector<void*>::push_back() because
Enumerate() doesn't realize that "i64* null" and "i8** null" are equivalent.
llvm-svn: 124285
doesn't return immediately after then the insert position in UniqueSCEVs will
be out of date. No test because this is a memory corruption issue. Fixes PR9051!
llvm-svn: 124282
a few loops accordingly. Should be no functional change.
This is a step for more accurate cost/benefit analysis of devirt/inlining
bonuses.
llvm-svn: 124275
optimized code are:
(non-negative number)+(power-of-two) != 0 -> true
and
(x | 1) != 0 -> true
Instcombine knows about the second one of course, but only does it if X|1
has only one use. These fire thousands of times in the testsuite.
llvm-svn: 124183
with BasicAA's DecomposeGEPExpression, which recently began
using a TargetData. This fixes PR8968, though the testcase
is awkward to reduce.
Also, update several off GetUnderlyingObject's users
which happen to have a TargetData handy to pass it in.
llvm-svn: 124134
occurs because instcombine sinks loads and inserts phis. This kicks in
on such apps as 175.vpr, eon, 403.gcc, xalancbmk and a bunch of times in
spec2006 in some app that uses std::deque.
This resolves the last of rdar://7339113.
llvm-svn: 124090
common cases. This triggers a surprising number of times in SPEC2K6
because min/max idioms end up doing this. For example, code from the
STL ends up looking like this to SRoA:
%202 = load i64* %__old_size, align 8, !tbaa !3
%203 = load i64* %__old_size, align 8, !tbaa !3
%204 = load i64* %__n, align 8, !tbaa !3
%205 = icmp ult i64 %203, %204
%storemerge.i = select i1 %205, i64* %__n, i64* %__old_size
%206 = load i64* %storemerge.i, align 8, !tbaa !3
We can now promote both the __n and the __old_size allocas.
This addresses another chunk of rdar://7339113, poor codegen on
stringswitch.
llvm-svn: 124088
clang's -Wuninitialized-experimental warning.
While these don't look like real bugs, clang's
-Wuninitialized-experimental analysis is stricter
than GCC's, and these fixes have the benefit
of being general nice cleanups.
llvm-svn: 124073
that have PHI or select uses of their element pointers. This can often happen
when instcombine sinks two loads into a successor, inserting a phi or select.
With this patch, we can scalarize the alloca, but the pinned elements are not
yet promoted. This is still a win for large aggregates where only one element
is used. This fixes rdar://8904039 and part of rdar://7339113 (poor codegen
on stringswitch).
llvm-svn: 124070
handle the "Transformation preventing inst" printing,
so that -scalarrepl -debug will always print the rejected
instruction. No functionality change.
llvm-svn: 124066
1. Fixed ARM pc adjustment.
2. Fixed dynamic-no-pic codegen
3. CSE of pc-relative load of global addresses.
It's now enabled by default for Darwin.
llvm-svn: 123991
qadd and qdadd uses "rd, rm, rn", the same applies to the 'sub' variants. This
is described in ARM manuals and matches the encoding used by the gnu assembler.
llvm-svn: 123975
DAG. Disable using "-disable-sched-cycles".
For ARM, this enables a framework for modeling the cpu pipeline and
counting stalls. It also activates several heuristics to drive
scheduling based on the model. Scheduling is inherently imprecise at
this stage, and until spilling is improved it may defeat attempts to
schedule. However, this framework provides greater control over
tuning codegen.
Although the flag is not target-specific, it should have very little
affect on the default scheduler used by x86. The only two changes that
affect x86 are:
- scheduling a high-latency operation bumps the current cycle so independent
operations can have their latency covered. i.e. two independent 4
cycle operations can produce results in 4 cycles, not 8 cycles.
- Two operations with equal register pressure impact and no
latency-based stalls on their uses will be prioritized by depth before height
(height is irrelevant if no stalls occur in the schedule below this point).
llvm-svn: 123971
flags. They are still not enable in this revision.
Added TargetInstrInfo::isZeroCost() to fix a fundamental problem with
the scheduler's model of operand latency in the selection DAG.
Generalized unit tests to work with sched-cycles.
llvm-svn: 123969
a select. A vector select is pairwise on each element so we'd need a new
condition with the right number of elements to select on. Fixes PR8994.
llvm-svn: 123963
While here, I'd like to complain about how vector is not an aggregate type
according to llvm::Type::isAggregateType(), but they're listed under aggregate
types in the LangRef and zero vectors are stored as ConstantAggregateZero.
llvm-svn: 123956
value, the "add pc" must be CSE'ed at the same time. We could follow the same
approach as T2 by adding pseudo instructions that combine the ldr + "add pc".
But the better approach is to use movw + movt (which I will enable soon), so
I'll leave this as a TODO.
llvm-svn: 123949
in cdp/cdp2 instructions. Also increase the hack with cdp/cdp2 instructions.
- Fix the encoding of cdp/cdp2 instructions for ARM (no thumb and thumb2 yet) and add testcases for t
hem.
llvm-svn: 123927
The value mapping gets confused about which original values have multiple new
definitions so they may need phi insertions.
This could probably be simplified by letting enterIntvBefore() take a live range
to be added following the instruction. As long as the range stays inside the
same basic block, value mapping shouldn't be a problem.
llvm-svn: 123926
auto-simplier the transform most missed by early-cse is (zext X) != 0 -> X != 0.
This patch adds this transform and some related logic to InstructionSimplify
and removes some of the logic from instcombine (unfortunately not all because
there are several situations in which instcombine can improve things by making
new instructions, whereas instsimplify is not allowed to do this). At -O2 this
often results in more than 15% more simplifications by early-cse, and results in
hundreds of lines of bitcode being eliminated from the testsuite. I did see some
small negative effects in the testsuite, for example a few additional instructions
in three programs. One program, 483.xalancbmk, got an additional 35 instructions,
which seems to be due to a function getting an additional instruction and then
being inlined all over the place.
llvm-svn: 123911