Change [x86] Fix tile register spill issue was causing problems for our build
using gcc-5.4.1
The problem was caused by this line:
for (const MachineInstr &MI : make_range(MIS.begin(), MI))
where MI was previously defined as a MachineBasicBlock iterator.
Differential Revision: https://reviews.llvm.org/D94415
Now that we flush the local value map for every instruction, we don't
need any extra flushes for specific cases. Also, LastFlushPoint is
not used for anything. Follow-ups to #c161665 (D91734).
This reapplies #3fd39d3.
Differential Revision: https://reviews.llvm.org/D92338
Local values are constants or addresses that can't be folded into
the instruction that uses them. FastISel materializes these in a
"local value" area that always dominates the current insertion
point, to try to avoid materializing these values more than once
(per block).
https://reviews.llvm.org/D43093 added code to sink these local
value instructions to their first use, which has two beneficial
effects. One, it is likely to avoid some unnecessary spills and
reloads; two, it allows us to attach the debug location of the
user to the local value instruction. The latter effect can
improve the debugging experience for debuggers with a "set next
statement" feature, such as the Visual Studio debugger and PS4
debugger, because instructions to set up constants for a given
statement will be associated with the appropriate source line.
There are also some constants (primarily addresses) that could be
produced by no-op casts or GEP instructions; the main difference
from "local value" instructions is that these are values from
separate IR instructions, and therefore could have multiple users
across multiple basic blocks. D43093 avoided sinking these, even
though they were emitted to the same "local value" area as the
other instructions. The patch comment for D43093 states:
Local values may also be used by no-op casts, which adds the
register to the RegFixups table. Without reversing the RegFixups
map direction, we don't have enough information to sink these
instructions.
This patch undoes most of D43093, and instead flushes the local
value map after(*) every IR instruction, using that instruction's
debug location. This avoids sometimes incorrect locations used
previously, and emits instructions in a more natural order.
In addition, constants materialized due to PHI instructions are
not assigned a debug location immediately; instead, when the
local value map is flushed, if the first local value instruction
has no debug location, it is given the same location as the
first non-local-value-map instruction. This prevents PHIs
from introducing unattributed instructions, which would either
be implicitly attributed to the location for the preceding IR
instruction, or given line 0 if they are at the beginning of
a machine basic block. Neither of those consequences is good
for debugging.
This does mean materialized values are not re-used across IR
instruction boundaries; however, only about 5% of those values
were reused in an experimental self-build of clang.
(*) Actually, just prior to the next instruction. It seems like
it would be cleaner the other way, but I was having trouble
getting that to work.
This reapplies commits cf1c774d and dc35368c, and adds the
modification to PHI handling, which should avoid problems
with debugging under gdb.
Differential Revision: https://reviews.llvm.org/D91734
The tile register spill need 2 instructions.
%46:gr64_nosp = MOV64ri 64
TILESTORED %stack.2, 1, killed %46:gr64_nosp, 0, $noreg, %43:tile
The first instruction load the stride to a GPR, and the second
instruction store tile register to stack slot. The optimization of merge
spill instruction is done after register allocation. And spill tile
register need create a new virtual register to for stride, so we can't
hoist tile spill instruction in postOptimization() of register
allocation. We can't hoist TILESTORED alone and we can't hoist the 2
instuctions together because MOV64ri will clobber some GPR. This patch
is to disble the spill merge for any spill which need 2 instructions.
Differential Revision: https://reviews.llvm.org/D93898
The size of spill/reload may be unknown for scalable vector types.
When the size is unknown, print it as "Unknown-size" instead of a very
large number.
Differential Revision: https://reviews.llvm.org/D94299
We are checking the unsafe-fp-math for sqrt but not for fpow, which behaves inconsistent.
As the direction is to remove this global option, we need to remove the unsafe-fp-math
check for sqrt and update the test with afn fast-math flags.
Reviewed By: Spatel
Differential Revision: https://reviews.llvm.org/D93891
This patch introduces a helper class SubsequentDelim to simplify loops
that generate a comma-separated lists.
For example, consider the following loop, taken from
llvm/lib/CodeGen/MachineBasicBlock.cpp:
for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
if (I != pred_begin())
OS << ", ";
OS << printMBBReference(**I);
}
The new class allows us to rewrite the loop as:
SubsequentDelim SD;
for (auto I = pred_begin(), E = pred_end(); I != E; ++I)
OS << SD << printMBBReference(**I);
where SD evaluates to the empty string for the first time and ", " for
subsequent iterations.
Unlike interleaveComma, defined in llvm/include/llvm/ADT/STLExtras.h,
SubsequentDelim can accommodate a wider variety of loops, including:
- those that conditionally skip certain items,
- those that need iterators to call getSuccProbability(I), and
- those that iterate over integer ranges.
As an example, this patch cleans up MachineBasicBlock::print.
Differential Revision: https://reviews.llvm.org/D94377
This patch is a part of D93817 and makes transformations in CodeGen use poison for shufflevector/insertelem's initial vector element.
The change in CodeGenPrepare.cpp is fine because the mask of shufflevector should be always zero.
It doesn't touch the second element (which is poison).
The change in InterleavedAccessPass.cpp is also fine becauses the mask is of the form <a, a+m, a+2m, .., a+km> where a+km is smaller than
the size of the first vector operand.
This is guaranteed by the caller of replaceBinOpShuffles, which is lowerInterleavedLoad.
It calls isDeInterleaveMask and isDeInterleaveMaskOfFactor to check the mask is the desirable form.
isDeInterleaveMask has the check that a+km is smaller than the vector size.
To check my understanding, I added an assertion & added a test to show that this optimization doesn't fire in such case.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D94056
This improves llvm::isConstOrConstSplat by allowing it to analyze
ISD::SPLAT_VECTOR nodes, in order to allow more constant-folding of
operations using scalable vector types.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94168
The TableGen immAllOnesV and immAllZerosV helpers implicitly wrapped the
ISD::isBuildVectorAll(Ones|Zeros) helper functions. This was inhibiting
their use for targets such as RISC-V which use ISD::SPLAT_VECTOR. In
particular, RISC-V had to define its own 'vnot' fragment.
In order to extend the scope of these nodes to include support for
ISD::SPLAT_VECTOR, two new ISD predicate functions have been introduced:
ISD::isConstantSplatVectorAll(Ones|Zeros). These effectively supersede
the older "isBuildVector" predicates, which are now simple wrappers for
the new functions. They pass a defaulted boolean toggle which preserves
the old behaviour. It is hoped that in time all call-sites can be ported
to the "isConstantSplatVector" functions.
While the use of ISD::isBuildVectorAll(Ones|Zeros) has not changed, the
behaviour of the TableGen immAll(Ones|Zeros)V **has**. To test the new
functionality, the custom RISC-V TableGen fragment has been removed and
replaced with the built-in 'vnot'. To test their use as pattern-roots, two
splat patterns have been updated accordingly.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D94223
This removes `exnref` type and `br_on_exn` instruction. This is
effectively NFC because most uses of these were already removed in the
previous CLs.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94041
This implements basic instructions for the new spec.
- Adds new versions of instructions: `catch`, `catch_all`, and `rethrow`
- Adds support for instruction selection for the new instructions
- `catch` needs a custom routine for the same reason `throw` needs one,
to encode `__cpp_exception` tag symbol.
- Updates `WebAssembly::isCatch` utility function to include `catch_all`
and Change code that compares an instruction's opcode with `catch` to
use that function.
- LateEHPrepare
- Previously in LateEHPrepare we added `catch` instruction to both
`catchpad`s (for user catches) and `cleanuppad`s (for destructors).
In the new version `catch` is generated from `llvm.catch` intrinsic
in instruction selection phase, so we only need to add `catch_all`
to the beginning of cleanup pads.
- `catch` is generated from instruction selection, but we need to
hoist the `catch` instruction to the beginning of every EH pad,
because `catch` can be in the middle of the EH pad or even in a
split BB from it after various code transformations.
- Removes `addExceptionExtraction` function, which was used to
generate `br_on_exn` before.
- CFGStackfiy: Deletes `fixUnwindMismatches` function. Running this
function on the new instruction causes crashes, and the new version
will be added in a later CL, whose contents will be completely
different. So deleting the whole function will make the diff easier to
read.
- Reenables all disabled tests in exception.ll and eh-lsda.ll and a
single basic test in cfg-stackify-eh.ll.
- Updates existing tests to use the new assembly format. And deletes
`br_on_exn` instructions from the tests and FileCheck lines.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94040
Clang generates `wasm.get.exception` and `wasm.get.ehselector`
intrinsics, which respectively return a caught exception value (a
pointer to some C++ exception struct) and a selector (an integer value
that tells which C++ `catch` clause the current exception matches, or
does not match any).
WasmEHPrepare is a pass that does some IR-level preparation before
instruction selection. Previously one of things we did in this pass was
to convert `wasm.get.exception` intrinsic calls to
`wasm.extract.exception` intrinsics. Their semantics were the same
except `wasm.extract.exception` did not have a token argument. We
maintained these two separate intrinsics with the same semantics because
instruction selection couldn't handle token arguments. This
`wasm.extract.exception` intrinsic was later converted to
`extract_exception` instruction in instruction selection, which was a
pseudo instruction to implement `br_on_exn`. Because `br_on_exn` pushed
an extracted value onto the value stack after the `end` instruction of a
`block`, but LLVM does not have a way of modeling that kind of behavior,
so this pseudo instruction was used to pull an extracted value out of
thin air, like this:
```
block $l0
...
br_on_exn $cpp_exception $l0
...
end
extract_exception ;; pushes values onto the stack
```
In the new spec, we don't need this pseudo instruction anymore because
`catch` itself returns a value and we don't have `br_on_exn` anymore. In
the spec `catch` returns multiple values (like `br_on_exn`), but here we
assume it only returns a single i32, which is sufficient to support C++.
So this renames `wasm.get.exception` intrinsic to `wasm.catch`. Because
this CL does not yet contain instruction selection for `wasm.catch`
intrinsic, all `RUN` lines in exception.ll, eh-lsda.ll, and
cfg-stackify-eh.ll, and a single `RUN` line in wasm-eh.cpp (which is an
end-to-end test from C++ source to assembly) fail. So this CL
temporarily disables those `RUN` lines, and for those test files without
any valid remaining `RUN` lines, adds a dummy `RUN` line to make them
pass. These tests will be reenabled in later CLs.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94039
`wasm_rethrow_in_catch` intrinsic and builtin are used in order to
rethrow an exception when the exception is caught but there is no
matching clause within the current `catch`. For example,
```
try {
foo();
} catch (int n) {
...
}
```
If the caught exception does not correspond to C++ `int` type, it should
be rethrown. These intrinsic/builtin were renamed `rethrow_in_catch`
because at the time I thought there would be another intrinsic for C++'s
`throw` keyword, which rethrows an exception. It turned out that `throw`
keyword doesn't require wasm's `rethrow` instruction, so we rename
`rethrow_in_catch` to just `rethrow` here.
Reviewed By: dschuff, tlively
Differential Revision: https://reviews.llvm.org/D94038
This implements vp_add, vp_and for the VE target by lowering them to the
VVP_* layer. We also add helper functions for VP SDNodes (isVPSDNode,
getVPMaskIdx, getVPExplicitVectorLengthIdx).
Reviewed By: kaz7
Differential Revision: https://reviews.llvm.org/D93766
This factors out code from MachineLICM that determines whether an instruction
is loop-invariant, which is a generally useful function. Thus this allows to
use that helper elsewhere too.
Differential Revision: https://reviews.llvm.org/D94082
A struct in C passed by value did not get debug information. Such values are currently
lowered to a Wasm local even in -O0 (not to an alloca like on other archs), which becomes
a Target Index operand (TI_LOCAL). The DWARF writing code was not emitting locations
in for TI's specifically if the location is a single range (not a list).
In addition, the ExplicitLocals pass which removes the ARGUMENT pseudo instructions did
not update the associated DBG_VALUEs, and couldn't even find these values since the code
assumed such instructions are adjacent, which is not the case here.
Also fixed asm printing of TIs needed by a test.
Differential Revision: https://reviews.llvm.org/D94140
Make the sequence of passes to select and rewrite instructions to
physical registers be a target callback. This is to prepare to allow
targets to split register allocation into multiple phases.
Attempt to simplify all/any-of style patterns that concatenate 2 smaller integers together into an and(x,y)/or(x,y) + icmp 0/-1 instead.
This is mainly to help some bool predicate reduction patterns where we end up concatenating bool vectors that have been bitcasted to integers.
Differential Revision: https://reviews.llvm.org/D93599
When using dbg.declare, the debug-info is generated from a list of
locals rather than through DBG_VALUE instructions in the MIR.
This patch is different from D90020 because it emits the DWARF
location expressions from that list of locals directly.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D90044
This patch fixes the two LiveDebugValues implementations
(InstrRef/VarLoc)Based to handle cases where the StackOffset contains
both a fixed and scalable component.
This depends on the `TargetRegisterInfo::prependOffsetExpression` being
added in D90020. Feel free to leave comments on that patch if you have them.
Reviewed By: djtodoro, jmorse
Differential Revision: https://reviews.llvm.org/D90046
Extend PEI to emit a DWARF expression for StackOffsets that have
a fixed and scalable component. This means the expression that needs
to be added is either:
<base> + offset
or:
<base> + offset + scalable_offset * scalereg
where for SVE, the scale reg is the Vector Granule Dwarf register, which
encodes the number of 64bit 'granules' in an SVE vector and which
the debugger can evaluate at runtime.
Reviewed By: jmorse
Differential Revision: https://reviews.llvm.org/D90020
If the return values can't be lowered to registers
SelectionDAG performs the sret demotion. This patch
contains the basic implementation for the same in
the GlobalISel pipeline.
Furthermore, targets should bring relevant changes
during lowerFormalArguments, lowerReturn and
lowerCall to make use of this feature.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D92953
Given the ability provided by DWARFv5 rnglists to reuse addresses in the
address pool, it can be advantageous to object file size to use range
encodings even when the range could be described by a direct low/high
pc.
Add a flag to allow enabling this in DWARFv5 for the purpose of
experimentation/data gathering.
It might be that it makes sense to enable this functionality by default
for DWARFv5 + Split DWARF at least, where the tradeoff/desire to
optimize for .o file size is more explicit and .o bytes are higher
priority than .dwo bytes.
This looks to have been done to save some duplicated code under
two different if statements, but it ends up being harmful to D94073.
This speculative constant can be called on a scalable vector type
with i64 element size when i64 scalars aren't legal. The code tries
and fails to find a vector type with i32 elements that it can use.
So only create the node when we know it will be used.
In some case, the RC may have 0 allocatable reg.
eg: VRSAVERC in PowerPC, which has only 1 reg, but it is also reserved.
The curreent implementation will keep calling the computePSetLimit because
getRegPressureSetLimit assume computePSetLimit will return a non-zero value.
The fix simply early return the value from TableGen for such special case.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D92907
Current implementation assumes that, each MachineConstantPoolValue takes
up sizeof(MachineConstantPoolValue::Ty) bytes. For PowerPC, we want to
lump all the constants with the same type as one MachineConstantPoolValue
to save the cost that calculate the TOC entry for each const. So, we need
to extend the MachineConstantPoolValue that break this assumption.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D89108
This patch disables the FSUB(-0,X)->FNEG(X) DAG combine when we're flushing subnormals. It requires updating the existing AMDGPU tests to use the fneg IR instruction, in place of the old fsub(-0,X) canonical form, since AMDGPU is the only backend currently checking the DenormalMode flags.
Note that this will require follow-up optimizations to make sure the FSUB(-0,X) form is handled appropriately
Differential Revision: https://reviews.llvm.org/D93243
Both tryReplaceExtracts and replaceBinOpShuffles may modify the IR, even
if no interleaved loads are generated, but currently the pass pretends
no changes were made.
This patch updates the pass to return true if either of the functions
made any changes. In case of tryReplaceExtracts, changes are made if
there are any Extracts and true is returned.
`replaceBinOpShuffles` always makes changes if BinOpShuffles is not empty.
It also always returned true, so I went ahead and change it to just
`replaceBinOpShuffles`.
Fixes PR48208.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D93997
Add a triple for powerpcle-*-*.
This is a little-endian encoding of the 32-bit PowerPC ABI, useful in certain niche situations:
1) A loader such as the FreeBSD loader which will be loading a little endian kernel. This is required for PowerPC64LE to load properly in pseries VMs.
Such a loader is implemented as a freestanding ELF32 LSB binary.
2) Userspace emulation of a 32-bit LE architecture such as x86 on 64-bit hosts such as PowerPC64LE with tools like box86 requires having a 32-bit LE toolchain and library set, as they operate by translating only the main binary and switching to native code when making library calls.
3) The Void Linux for PowerPC project is experimenting with running an entire powerpcle userland.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D93918