Summary:
In this implementation, LiveIntervalAnalysis invents a few register
masks on basic block boundaries that preserve no registers. The nice
thing about this is that it prevents the prologue inserter from thinking
it needs to spill all XMM CSRs, because it doesn't see any explicit
physreg defs in the MI.
Reviewers: MatzeB, qcolombet, JosephTremoulet, majnemer
Subscribers: MatzeB, llvm-commits
Differential Revision: http://reviews.llvm.org/D14407
llvm-svn: 252318
We now create the .eh_frame section early, just like every other special
section.
This means that the special flags are visible in code that explicitly
asks for ".eh_frame".
llvm-svn: 252313
This attribute allows the compiler to assume that the function never recurses into itself, either directly or indirectly (transitively). This can be used among other things to demote global variables to locals.
llvm-svn: 252282
The bug: I missed adding break statements in the switch / case.
Original commit message:
[SCEV] Teach SCEV some axioms about non-wrapping arithmetic
Summary:
- A s< (A + C)<nsw> if C > 0
- A s<= (A + C)<nsw> if C >= 0
- (A + C)<nsw> s< A if C < 0
- (A + C)<nsw> s<= A if C <= 0
Right now `C` needs to be a constant, but we can later generalize it to
be a non-constant if needed.
Reviewers: atrick, hfinkel, reames, nlewycky
Subscribers: sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D13686
llvm-svn: 252236
Previously, subprograms contained a metadata reference to the function they
described. Because most clients need to get or set a subprogram for a given
function rather than the other way around, this created unneeded inefficiency.
For example, many passes needed to call the function llvm::makeSubprogramMap()
to build a mapping from functions to subprograms, and the IR linker needed to
fix up function references in a way that caused quadratic complexity in the IR
linking phase of LTO.
This change reverses the direction of the edge by storing the subprogram as
function-level metadata and removing DISubprogram's function field.
Since this is an IR change, a bitcode upgrade has been provided.
Fixes PR23367. An upgrade script for textual IR for out-of-tree clients is
attached to the PR.
Differential Revision: http://reviews.llvm.org/D14265
llvm-svn: 252219
Also, remove an enum hack where enum values were used as indexes into an array.
We may want to make this a real class to allow pattern-based queries/customization (D13417).
llvm-svn: 252196
The needed lld matching changes to be submitted immediately next,
but this revision will cause lld failures with this alone which is expected.
This removes the eating of the error in Archive::Child::getSize() when the characters
in the size field in the archive header for the member is not a number. To do this we
have all of the needed methods return ErrorOr to push them up until we get out of lib.
Then the tools and can handle the error in whatever way is appropriate for that tool.
So the solution is to plumb all the ErrorOr stuff through everything that touches archives.
This include its iterators as one can create an Archive object but the first or any other
Child object may fail to be created due to a bad size field in its header.
Thanks to Lang Hames on the changes making child_iterator contain an
ErrorOr<Child> instead of a Child and the needed changes to ErrorOr.h to add
operator overloading for * and -> .
We don’t want to use llvm_unreachable() as it calls abort() and is produces a “crash”
and using report_fatal_error() to move the error checking will cause the program to
stop, neither of which are really correct in library code. There are still some uses of
these that should be cleaned up in this library code for other than the size field.
The test cases use archives with text files so one can see the non-digit character,
in this case a ‘%’, in the size field.
These changes will require corresponding changes to the lld project. That will be
committed immediately after this change. But this revision will cause lld failures
with this alone which is expected.
llvm-svn: 252192
With this change, instrumentation code and reader/write
code related to profile data structs are kept strictly
in-sync. THis will be extended to cfe and compile-rt
references as well.
Differential Revision: http://reviews.llvm.org/D13843
llvm-svn: 252113
1. A macro with argument: LLVM_PACKED(StructDefinition)
2. A pair of macros defining scope of region with packing:
LLVM_PACKED_START
struct A { ... };
struct B { ... };
LLVM_PACKED_END
Differential Revision: http://reviews.llvm.org/D14337
llvm-svn: 252099
Splits PrintLoopPass into a new-style pass and a PrintLoopPassWrapper,
much like we already do for PrintFunctionPass and PrintModulePass.
llvm-svn: 252085
This is part-1 of the patch that replaces all edge weights in MBB by
probabilities, which only adds new interfaces. No functional changes.
Differential revision: http://reviews.llvm.org/D13908
llvm-svn: 252083
Summary:
Data operands of a call or invoke consist of the call arguments, and
the bundle operands associated with the `call` (or `invoke`)
instruction. The motivation for this change is that we'd like to be
able to query "argument attributes" like `readonly` and `nocapture`
for bundle operands naturally.
This change also provides a conservative "implementation" for these
attributes for any bundle operand, and an extension point for future
work.
Reviewers: chandlerc, majnemer, reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14305
llvm-svn: 252077
We can often end up with conditional stores that cannot be speculated. They can come from fairly simple, idiomatic code:
if (c & flag1)
*a = x;
if (c & flag2)
*a = y;
...
There is no dominating or post-dominating store to a, so it is not legal to move the store unconditionally to the end of the sequence and cache the intermediate result in a register, as we would like to.
It is, however, legal to merge the stores together and do the store once:
tmp = undef;
if (c & flag1)
tmp = x;
if (c & flag2)
tmp = y;
if (c & flag1 || c & flag2)
*a = tmp;
The real power in this optimization is that it allows arbitrary length ladders such as these to be completely and trivially if-converted. The typical code I'd expect this to trigger on often uses binary-AND with constants as the condition (as in the above example), which means the ending condition can simply be truncated into a single binary-AND too: 'if (c & (flag1|flag2))'. As in the general case there are bitwise operators here, the ladder can often be optimized further too.
This optimization involves potentially increasing register pressure. Even in the simplest case, the lifetime of the first predicate is extended. This can be elided in some cases such as using binary-AND on constants, but not in the general case. Threading 'tmp' through all branches can also increase register pressure.
The optimization as in this patch is enabled by default but kept in a very conservative mode. It will only optimize if it thinks the resultant code should be if-convertable, and additionally if it can thread 'tmp' through at least one existing PHI, so it will only ever in the worst case create one more PHI and extend the lifetime of a predicate.
This doesn't trigger much in LNT, unfortunately, but it does trigger in a big way in a third party test suite.
llvm-svn: 252051
This was breaking the modules build and is being reverted while we reach consensus on the right way to solve this layering problem. This reverts commit r251785.
llvm-svn: 252040
Intended to make later changes simpler. Exposes
`getBundleOperandsStartIndex` and `getBundleOperandsEndIndex`, and uses
them for the computation in `getNumTotalBundleOperands`.
llvm-svn: 252037
Summary:
The goal of this pass is to perform store-to-load forwarding across the
backedge of a loop. E.g.:
for (i)
A[i + 1] = A[i] + B[i]
=>
T = A[0]
for (i)
T = T + B[i]
A[i + 1] = T
The pass relies on loop dependence analysis via LoopAccessAnalisys to
find opportunities of loop-carried dependences with a distance of one
between a store and a load. Since it's using LoopAccessAnalysis, it was
easy to also add support for versioning away may-aliasing intervening
stores that would otherwise prevent this transformation.
This optimization is also performed by Load-PRE in GVN without the
option of multi-versioning. As was discussed with Daniel Berlin in
http://reviews.llvm.org/D9548, this is inferior to a more loop-aware
solution applied here. Hopefully, we will be able to remove some
complexity from GVN/MemorySSA as a consequence.
In the long run, we may want to extend this pass (or create a new one if
there is little overlap) to also eliminate loop-indepedent redundant
loads and store that *require* versioning due to may-aliasing
intervening stores/loads. I have some motivating cases for store
elimination. My plan right now is to wait for MemorySSA to come online
first rather than using memdep for this.
The main motiviation for this pass is the 456.hmmer loop in SPECint2006
where after distributing the original loop and vectorizing the top part,
we are left with the critical path exposed in the bottom loop. Being
able to promote the memory dependence into a register depedence (even
though the HW does perform store-to-load fowarding as well) results in a
major gain (~20%). This gain also transfers over to x86: it's
around 8-10%.
Right now the pass is off by default and can be enabled
with -enable-loop-load-elim. On the LNT testsuite, there are two
performance changes (negative number -> improvement):
1. -28% in Polybench/linear-algebra/solvers/dynprog: the length of the
critical paths is reduced
2. +2% in Polybench/stencils/adi: Unfortunately, I couldn't reproduce this
outside of LNT
The pass is scheduled after the loop vectorizer (which is after loop
distribution). The rational is to try to reuse LAA state, rather than
recomputing it. The order between LV and LLE is not critical because
normally LV does not touch scalar st->ld forwarding cases where
vectorizing would inhibit the CPU's st->ld forwarding to kick in.
LoopLoadElimination requires LAA to provide the full set of dependences
(including forward dependences). LAA is known to omit loop-independent
dependences in certain situations. The big comment before
removeDependencesFromMultipleStores explains why this should not occur
for the cases that we're interested in.
Reviewers: dberlin, hfinkel
Subscribers: junbuml, dberlin, mssimpso, rengolin, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D13259
llvm-svn: 252017
Summary: Will be used by the LoopLoadElimination pass.
Reviewers: hfinkel
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13258
llvm-svn: 252016
Summary:
The functions use LAI and MemoryDepChecker classes so they need to be
defined after those definitions outside of the Dependence class.
Will be used by the LoopLoadElimination pass.
Reviewers: hfinkel
Subscribers: rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D13257
llvm-svn: 252015
A profile of an LTO link of Chrome revealed that we were spending some
~30-50% of execution time in the function Constant::getRelocationInfo(),
which is called from TargetLoweringObjectFile::getKindForGlobal() and in turn
from TargetMachine::getNameWithPrefix().
It turns out that we only need the result of getKindForGlobal() when
targeting Mach-O, so this change moves the relevant part of the logic to
TargetLoweringObjectFileMachO.
NFCI.
Differential Revision: http://reviews.llvm.org/D14168
llvm-svn: 252014
Introduce DIPrinter which takes care of rendering DILineInfo and
friends. This allows LLVMSymbolizer class to return a structured data
instead of plain std::strings.
llvm-svn: 251989
Summary:
We now collect all types of dependences including lexically forward
deps not just "interesting" ones.
Reviewers: hfinkel
Subscribers: rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D13256
llvm-svn: 251985
Make printDILineInfo and friends responsible for just rendering the
contents of the structures, demangling should actually be performed
earlier, when we have the information about the originating
SymbolizableModule at hand.
llvm-svn: 251981
Summary:
When the dependence distance in zero then we have a loop-independent
dependence from the earlier to the later access.
No current client of LAA uses forward dependences so other than
potentially hitting the MaxDependences threshold earlier, this change
shouldn't affect anything right now.
This and the previous patch were tested together for compile-time
regression. None found in LNT/SPEC.
Reviewers: hfinkel
Subscribers: rengolin, llvm-commits
Differential Revision: http://reviews.llvm.org/D13255
llvm-svn: 251973
Bypassing LLVM for this has a number of benefits:
1) Laziness support becomes asm-syntax agnostic (previously lazy jitting didn't
work on Windows as the resolver block was in Darwin asm).
2) For cross-process JITs, it allows resolver blocks and trampolines to be
emitted directly in the target process, reducing cross process traffic.
3) It should be marginally faster.
llvm-svn: 251933