The dream of a unified check-line auto-generator for all phases of compilation is dead.
The llc script has already diverged to be better at its goal, so having 2 scripts that
do almost the same thing is just causing confusion.
We can rip out the llc ability in update_test_checks.py next and rename it, so it will
be clear that we have one script for llc check auto-generation and another for opt.
llvm-svn: 305206
utils/update_test_checks.py was improved with:
http://reviews.llvm.org/rL265414
to include the first line of the function (expected to be
a comment line). This ensures that nothing bad has happened
before the first actual line of checked asm. It also matches
the existing behavior of the old script.
llvm-svn: 265416
1. Removed the run line for mingw32 and made the Darwin triples unknown.
This is a test of 32-bit vs. 64-bit platform and the underlying hardware.
We have other tests for checking behavioral differences of the OS platform.
2. Changed the CPU specifiers to the attributes they were meant to represent.
Any CPU that doesn't have SSE4.2 is assumed to have slow unaligned 16-byte accesses,
so it won't use those here.
3. Although the stores really could all be CHECK-DAG, I left them as CHECK-NEXT to
show the strange behavior of the instruction scheduler in the SLOW_32 case.
4. The odd-looking instructions are due to the use of a null pointer in the IR, so
we have integer immediate store addresses. Cute.
llvm-svn: 264796
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
The stack realignment code was fixed to work when there is stack realignment and
a dynamic alloca is present so this shouldn't cause correctness issues anymore.
Note that this also enables generation of AVX instructions for memset
under the assumptions:
- Unaligned loads/stores are always fast on CPUs supporting AVX
- AVX is not slower than SSE
We may need some tweaked heuristics if one of those assumptions turns out not to
be true.
Effectively reverts r58317. Part of PR2962.
llvm-svn: 167967
for pre-2.9 bitcode files. We keep x86 unaligned loads, movnt, crc32, and the
target indep prefetch change.
As usual, updating the testsuite is a PITA.
llvm-svn: 133337
The theory is it's still faster than a pair of movq / a quad of movl. This
will probably hurt older chips like P4 but should run faster on current
and future Intel processors. rdar://8817010
llvm-svn: 122955
1. Makes it possible to lower with floating point loads and stores.
2. Avoid unaligned loads / stores unless it's fast.
3. Fix some memcpy lowering logic bug related to when to optimize a
load from constant string into a constant.
4. Adjust x86 memcpy lowering threshold to make it more sane.
5. Fix x86 target hook so it uses vector and floating point memory
ops more effectively.
rdar://7774704
llvm-svn: 100090
1. x86-64 byval alignment should be max of 8 and alignment of type. Previously the code was not doing what the commit message was saying.
2. Do not use byte repeat move and store operations. These are slow.
llvm-svn: 55139
memcpy lowering code; this ensures that the size node has the desired
result type. This fixes a regression from r49572 with @llvm.memcpy.i64
on x86-32.
llvm-svn: 49761