LegalizeDAG.cpp uses the value of the comparison operands when checking
the legality of BR_CC, so DAGCombiner should do the same.
v2:
- Expand more BR_CC value types for NVPTX
v3:
- Expand correct BR_CC value types for Hexagon, Mips, and XCore.
llvm-svn: 176694
This calling convention was added just to handle functions which return vector
of floats. The fix committed in r165585 solves the problem.
llvm-svn: 176530
This patch eliminates the need to emit a constant move instruction when this
pattern is matched:
(select (setgt a, Constant), T, F)
The pattern above effectively turns into this:
(conditional-move (setlt a, Constant + 1), F, T)
llvm-svn: 176384
- ISD::SHL/SRL/SRA must have either both scalar or both vector operands
but TLI.getShiftAmountTy() so far only return scalar type. As a
result, backend logic assuming that breaks.
- Rename the original TLI.getShiftAmountTy() to
TLI.getScalarShiftAmountTy() and re-define TLI.getShiftAmountTy() to
return target-specificed scalar type or the same vector type as the
1st operand.
- Fix most TICG logic assuming TLI.getShiftAmountTy() a simple scalar
type.
llvm-svn: 176364
This function will be used later when the capability to search delay slot
filling instructions in successor blocks is added. No intended functionality
changes.
llvm-svn: 176325
to TargetFrameLowering, where it belongs. Incidentally, this allows us
to delete some duplicated (and slightly different!) code in TRI.
There are potentially other layering problems that can be cleaned up
as a result, or in a similar manner.
The refactoring was OK'd by Anton Korobeynikov on llvmdev.
Note: this touches the target interfaces, so out-of-tree targets may
be affected.
llvm-svn: 175788
The constructs %hi() and %lo() represent the high and low 16
bits of the address.
Because the 16 bit offset field of an LW instruction is
interpreted as signed, if bit 15 of the low part is 1 then the
low part will act as a negative and 1 needs to be added to the
high part.
Contributer: Vladimir Medic
llvm-svn: 175707
excluding visibility bits.
Mips specific standalone assembler directive "set at".
This directive changes the general purpose register
that the assembler will use when given the symbolic
register name $at.
This does not include negative testing. That will come
in a future patch.
A side affect of this patch recognizes the different
GPR register names for temporaries between old abi
and new abi so a test case for that is included.
Contributer: Vladimir Medic
llvm-svn: 175686
SltCCRxRy16, SltiCCRxImmX16, SltiuCCRxImmX16, SltuCCRxRy16
$T8 shows up as register $24 when emitted from C++ code so we had
to change some tests that were already there for this functionality.
llvm-svn: 175593
excluding visibility bits.
Mips (o32 abi) specific e_header setting.
EF_MIPS_ABI_O32 needs to be set in the
ELF header flags for o32 abi output.
Contributer: Reed Kotler
llvm-svn: 175569
excluding visibility bits.
Mips (Mips16) specific e_header setting.
EF_MIPS_ARCH_ASE_M16 needs to be set in the
ELF header flags for Mips16.
Contributer: Reed Kotler
llvm-svn: 175566
excluding visibility bits.
Mips (MicroMips) specific STO handling .
The st_other field settig for STO_MIPS_MICROMIPS
Contributer: Zoran Jovanovic
llvm-svn: 175564
at this time, llvm is generating a different but equivalent pattern
that would lead to this instruction. I am trying to think of a way
to get it to generate this. If I can't, I may just remove the pseudo.
llvm-svn: 175419
This expansion will be moved to expandISelPseudos as soon as I can figure
out how to do that. There are other instructions which use this
ExpandFEXT_T8I816_ins and as soon as I have finished expanding them all,
I will delete the macro asm string text so it has no way to be used
in the future.
llvm-svn: 175413
as well as 16/32 bit variants to do and so I want this to look nice
when I do it. I've been experimenting with this. No new test cases
are needed.
llvm-svn: 175369
functions. Set AddedComplexity to determine the order in which patterns are
matched.
This simplifies selection of floating point loads/stores.
No functionality change intended.
llvm-svn: 175300
of the old jit and which we don't intend to support in mips16 or micromips.
This dependency is for the testing of whether an instruction is a pseudo.
llvm-svn: 175297
not matter but makes it more gcc compatible which avoids possible subtle
problems. Also, turned back on a disabled check in helloworld.ll.
llvm-svn: 175237
1. Define and use function terminateSearch.
2. Use MachineBasicBlock::iterator instead of MachineBasicBlock::instr_iterator.
3. Delete the line which checks whether an instruction is a pseudo.
llvm-svn: 175219
up so that we can apply the direct object emitter patch. This patch
should be a nop right now and it's test is to not break what is already
there.
llvm-svn: 175126
if the offset fits in 11 bits. This makes use of the fact that the abi
requires sp to be 8 byte aligned so the actual offset can fit in 8
bits. It will be shifted left and sign extended before being actually used.
The assembler or direct object emitter will shift right the 11 bit
signed field by 3 bits. We don't need to deal with that here.
llvm-svn: 175073
MipsCodeEmitter.cpp.
JALR and NOP are expanded by function emitPseudoExpansionLowering, which is not
called when the old JIT is used.
This fixes the following tests which have been failing on
llvm-mips-linux builder:
LLVM :: ExecutionEngine__2003-01-04-LoopTest.ll
LLVM :: ExecutionEngine__2003-05-06-LivenessClobber.ll
LLVM :: ExecutionEngine__2003-06-04-bzip2-bug.ll
LLVM :: ExecutionEngine__2005-12-02-TailCallBug.ll
LLVM :: ExecutionEngine__2003-10-18-PHINode-ConstantExpr-CondCode-Failure.ll
LLVM :: ExecutionEngine__hello2.ll
LLVM :: ExecutionEngine__stubs.ll
LLVM :: ExecutionEngine__test-branch.ll
LLVM :: ExecutionEngine__test-call.ll
LLVM :: ExecutionEngine__test-common-symbols.ll
LLVM :: ExecutionEngine__test-loadstore.ll
LLVM :: ExecutionEngine__test-loop.ll
llvm-svn: 174912
same so we put in the comment field an indicator when we think we are
emitting the 16 bit version. For the direct object emitter, the difference is
important as well as for other passes which need an accurate count of
program size. There will be other similar putbacks to this for various
instructions.
llvm-svn: 174747
allowed size for the instruction. This code uses RegScavenger to fix this.
We sometimes need 2 registers for Mips16 so we must handle things
differently than how register scavenger is normally used.
llvm-svn: 174696
is a vararg function.
The original code was examining flag OutputArg::IsFixed to determine whether
CC_MipsN_VarArg or CC_MipsN should be called. This is not correct, since this
flag is often set to false when the function being analyzed is a non-variadic
function.
llvm-svn: 174442
and enables the instruction printer to print aliased
instructions.
Due to usage of RegisterOperands a change in common
code (utils/TableGen/AsmWriterEmitter.cpp) is required
to get the correct register value if it is a RegisterOperand.
Contributer: Vladimir Medic
llvm-svn: 174358
and update ELF header e_flags.
Currently gathering information such as symbol,
section and data is done by collecting it in an
MCAssembler object. From MCAssembler and MCAsmLayout
objects ELFObjectWriter::WriteObject() forms and
streams out the ELF object file.
This patch just adds a few members to the MCAssember
class to store and access the e_flag settings. It
allows for runtime additions to the e_flag by
assembler directives. The standalone assembler can
get to MCAssembler from getParser().getStreamer().getAssembler().
This patch is the generic infrastructure and will be
followed by patches for ARM and Mips for their target
specific use.
Contributer: Jack Carter
llvm-svn: 173882
conditions are met:
1. They share the same operand and are in the same BB.
2. Both outputs are used.
3. The target has a native instruction that maps to ISD::FSINCOS node or
the target provides a sincos library call.
Implemented the generic optimization in sdisel and enabled it for
Mac OSX. Also added an additional optimization for x86_64 Mac OSX by
using an alternative entry point __sincos_stret which returns the two
results in xmm0 / xmm1.
rdar://13087969
PR13204
llvm-svn: 173755
Allow Mips16 routines to call Mips32 routines that have abi requirements
that either arguments or return values are passed in floating point
registers. This handles only the pic case. We have not done non pic
for Mips16 yet in any form.
The libm functions are Mips32, so with this addition we have a complete
Mips16 hard float implementation.
We still are not able to complete mix Mip16 and Mips32 with hard float.
That will be the next phase which will have several steps. For Mips32
to freely call Mips16 some stub functions must be created.
llvm-svn: 173320
but I cannot reproduce the problem and have scrubed my sources and
even tested with llvm-lit -v --vg.
Formatting fixes. Mostly long lines and
blank spaces at end of lines.
Contributer: Jack Carter
llvm-svn: 172882
but I cannot reproduce the problem and have scrubed my sources and
even tested with llvm-lit -v --vg.
Support for Mips register information sections.
Mips ELF object files have a section that is dedicated
to register use info. Some of this information such as
the assumed Global Pointer value is used by the linker
in relocation resolution.
The register info file is .reginfo in o32 and .MIPS.options
in 64 and n32 abi files.
This patch contains the changes needed to create the sections,
but leaves the actual register accounting for a future patch.
Contributer: Jack Carter
llvm-svn: 172847
but I cannot reproduce the problem and have scrubed my sources and
even tested with llvm-lit -v --vg.
Removal of redundant code and formatting fixes.
Contributers: Jack Carter/Vladimir Medic
llvm-svn: 172842
but I cannot reproduce the problem and have scrubed my sources and
even tested with llvm-lit -v --vg.
The Mips RDHWR (Read Hardware Register) instruction was not
tested for assembler or dissassembler consumption. This patch
adds that functionality.
Contributer: Vladimir Medic
llvm-svn: 172685
Hope you are feeling better.
The Mips RDHWR (Read Hardware Register) instruction was not
tested for assembler or dissassembler consumption. This patch
adds that functionality.
Contributer: Vladimir Medic
llvm-svn: 172579
we need to generate a N64 compound relocation
R_MIPS_GPREL_32/R_MIPS_64/R_MIPS_NONE.
The bug was exposed by the SingleSourcetest case
DuffsDevice.c.
Contributer: Jack Carter
llvm-svn: 172496
register names in the standalone assembler llvm-mc.
Registers such as $A1 can represent either a 32 or
64 bit register based on the instruction using it.
In addition, based on the abi, $T0 can represent different
32 bit registers.
The problem is resolved by the Mips specific AsmParser
td definitions changing to work together. Many cases of
RegisterClass parameters are now RegisterOperand.
Contributer: Vladimir Medic
llvm-svn: 172284
value in the 64 bit .eh_frame section.
It doesn't however allow exception handling to work
yet since it depends on the correct relocation model
being set in the ELF header flags.
Contributer: Jack Carter
llvm-svn: 171881
This is necessary not only for representing empty ranges, but for handling
multibyte characters in the input. (If the end pointer in a range refers to
a multibyte character, should it point to the beginning or the end of the
character in a char array?) Some of the code in the asm parsers was already
assuming this anyway.
llvm-svn: 171765
a TargetMachine to construct (and thus isn't always available), to an
analysis group that supports layered implementations much like
AliasAnalysis does. This is a pretty massive change, with a few parts
that I was unable to easily separate (sorry), so I'll walk through it.
The first step of this conversion was to make TargetTransformInfo an
analysis group, and to sink the nonce implementations in
ScalarTargetTransformInfo and VectorTargetTranformInfo into
a NoTargetTransformInfo pass. This allows other passes to add a hard
requirement on TTI, and assume they will always get at least on
implementation.
The TargetTransformInfo analysis group leverages the delegation chaining
trick that AliasAnalysis uses, where the base class for the analysis
group delegates to the previous analysis *pass*, allowing all but tho
NoFoo analysis passes to only implement the parts of the interfaces they
support. It also introduces a new trick where each pass in the group
retains a pointer to the top-most pass that has been initialized. This
allows passes to implement one API in terms of another API and benefit
when some other pass above them in the stack has more precise results
for the second API.
The second step of this conversion is to create a pass that implements
the TargetTransformInfo analysis using the target-independent
abstractions in the code generator. This replaces the
ScalarTargetTransformImpl and VectorTargetTransformImpl classes in
lib/Target with a single pass in lib/CodeGen called
BasicTargetTransformInfo. This class actually provides most of the TTI
functionality, basing it upon the TargetLowering abstraction and other
information in the target independent code generator.
The third step of the conversion adds support to all TargetMachines to
register custom analysis passes. This allows building those passes with
access to TargetLowering or other target-specific classes, and it also
allows each target to customize the set of analysis passes desired in
the pass manager. The baseline LLVMTargetMachine implements this
interface to add the BasicTTI pass to the pass manager, and all of the
tools that want to support target-aware TTI passes call this routine on
whatever target machine they end up with to add the appropriate passes.
The fourth step of the conversion created target-specific TTI analysis
passes for the X86 and ARM backends. These passes contain the custom
logic that was previously in their extensions of the
ScalarTargetTransformInfo and VectorTargetTransformInfo interfaces.
I separated them into their own file, as now all of the interface bits
are private and they just expose a function to create the pass itself.
Then I extended these target machines to set up a custom set of analysis
passes, first adding BasicTTI as a fallback, and then adding their
customized TTI implementations.
The fourth step required logic that was shared between the target
independent layer and the specific targets to move to a different
interface, as they no longer derive from each other. As a consequence,
a helper functions were added to TargetLowering representing the common
logic needed both in the target implementation and the codegen
implementation of the TTI pass. While technically this is the only
change that could have been committed separately, it would have been
a nightmare to extract.
The final step of the conversion was just to delete all the old
boilerplate. This got rid of the ScalarTargetTransformInfo and
VectorTargetTransformInfo classes, all of the support in all of the
targets for producing instances of them, and all of the support in the
tools for manually constructing a pass based around them.
Now that TTI is a relatively normal analysis group, two things become
straightforward. First, we can sink it into lib/Analysis which is a more
natural layer for it to live. Second, clients of this interface can
depend on it *always* being available which will simplify their code and
behavior. These (and other) simplifications will follow in subsequent
commits, this one is clearly big enough.
Finally, I'm very aware that much of the comments and documentation
needs to be updated. As soon as I had this working, and plausibly well
commented, I wanted to get it committed and in front of the build bots.
I'll be doing a few passes over documentation later if it sticks.
Commits to update DragonEgg and Clang will be made presently.
llvm-svn: 171681
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
utils/sort_includes.py script.
Most of these are updating the new R600 target and fixing up a few
regressions that have creeped in since the last time I sorted the
includes.
llvm-svn: 171362
next few days but it's already tested a lot from test-suite and works fine.
This patch completes almost 100% pass of test-suite for mips 16.
llvm-svn: 170674
these patches are tested a lot by test-suite but
make check tests are forthcoming once the next
few patches that complete this are committed.
with the next few patches the pass rate for mips16 is
near 100%
llvm-svn: 170656
physical register $r1 to $r0.
GNU disassembler recognizes an "or" instruction as a "move", and this change
makes the disassembled code easier to read.
Original patch by Reed Kotler.
llvm-svn: 170655
Mips16 is really a processor decoding mode (ala thumb 1) and in the same
program, mips16 and mips32 functions can exist and can call each other.
If a jal type instruction encounters an address with the lower bit set, then
the processor switches to mips16 mode (if it is not already in it). If the
lower bit is not set, then it switches to mips32 mode.
The linker knows which functions are mips16 and which are mips32.
When relocation is performed on code labels, this lower order bit is
set if the code label is a mips16 code label.
In general this works just fine, however when creating exception handling
tables and dwarf, there are cases where you don't want this lower order
bit added in.
This has been traditionally distinguished in gas assembly source by using a
different syntax for the label.
lab1: ; this will cause the lower order bit to be added
lab2=. ; this will not cause the lower order bit to be added
In some cases, it does not matter because in dwarf and debug tables
the difference of two labels is used and in that case the lower order
bits subtract each other out.
To fix this, I have added to mcstreamer the notion of a debuglabel.
The default is for label and debug label to be the same. So calling
EmitLabel and EmitDebugLabel produce the same result.
For various reasons, there is only one set of labels that needs to be
modified for the mips exceptions to work. These are the "$eh_func_beginXXX"
labels.
Mips overrides the debug label suffix from ":" to "=." .
This initial patch fixes exceptions. More changes most likely
will be needed to DwarfCFException to make all of this work
for actual debugging. These changes will be to emit debug labels in some
places where a simple label is emitted now.
Some historical discussion on this from gcc can be found at:
http://gcc.gnu.org/ml/gcc-patches/2008-08/msg00623.htmlhttp://gcc.gnu.org/ml/gcc-patches/2008-11/msg01273.html
llvm-svn: 170279
In this case, essentially it is soft float with different library routines.
The next step will be to make this fully interoperational with mips32 floating
point and that requires creating stubs for functions with signatures that
contain floating point types.
I have a more sophisticated design for mips16 hardfloat which I hope to
implement at a later time that directly does floating point without the need
for function calls.
The mips16 encoding has no floating point instructions so one needs to
switch to mips32 mode to execute floating point instructions.
llvm-svn: 170259
Accordingly, add helper funtions getSimpleValueType (in parallel to
getValueType) in SDValue, SDNode, and TargetLowering.
This is the first, in a series of patches.
This is the second attempt. In the first attempt (r169837), a few
getSimpleVT() were hoisted too far, detected by bootstrap failures.
llvm-svn: 170104
mention the inline memcpy / memset expansion code is a mess?
This patch split the ZeroOrLdSrc argument into two: IsMemset and ZeroMemset.
The first indicates whether it is expanding a memset or a memcpy / memmove.
The later is whether the memset is a memset of zero. It's totally possible
(likely even) that targets may want to do different things for memcpy and
memset of zero.
llvm-svn: 169959
Also added more comments to explain why it is generally ok to return true.
- Rename getOptimalMemOpType argument IsZeroVal to ZeroOrLdSrc. It's meant to
be true for loaded source (memcpy) or zero constants (memset). The poor name
choice is probably some kind of legacy issue.
llvm-svn: 169954
Accordingly, add helper funtions getSimpleValueType (in parallel to
getValueType) in SDValue, SDNode, and TargetLowering.
This is the first, in a series of patches.
llvm-svn: 169837
1. Teach it to use overlapping unaligned load / store to copy / set the trailing
bytes. e.g. On 86, use two pairs of movups / movaps for 17 - 31 byte copies.
2. Use f64 for memcpy / memset on targets where i64 is not legal but f64 is. e.g.
x86 and ARM.
3. When memcpy from a constant string, do *not* replace the load with a constant
if it's not possible to materialize an integer immediate with a single
instruction (required a new target hook: TLI.isIntImmLegal()).
4. Use unaligned load / stores more aggressively if target hooks indicates they
are "fast".
5. Update ARM target hooks to use unaligned load / stores. e.g. vld1.8 / vst1.8.
Also increase the threshold to something reasonable (8 for memset, 4 pairs
for memcpy).
This significantly improves Dhrystone, up to 50% on ARM iOS devices.
rdar://12760078
llvm-svn: 169791
missed in the first pass because the script didn't yet handle include
guards.
Note that the script is now able to handle all of these headers without
manual edits. =]
llvm-svn: 169224
This change adds endian-awareness to MipsJITInfo and emitWordLE in
MipsCodeEmitter has become emitWord now to support both endianness.
Patch by Petar Jovanovic.
llvm-svn: 169177
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
Rationale:
1) This was the name in the comment block. ;]
2) It matches Clang's __has_feature naming convention.
3) It matches other compiler-feature-test conventions.
Sorry for the noise. =]
I've also switch the comment block to use a \brief tag and not duplicate
the name.
llvm-svn: 168996
This patch provides support for the MIPS relocations:
*) R_MIPS_GOT_HI16
*) R_MIPS_GOT_LO16
*) R_MIPS_CALL_HI16
*) R_MIPS_CALL_LO16
These are used for large GOT instruction sequences.
Contributer: Jack Carter
llvm-svn: 168471
We will make them delay slot forms if there is something that can be
placed in the delay slot during a separate pass. Mips16 extended instructions
cannot be placed in delay slots.
llvm-svn: 166990
Previously mips16 was sharing the pattern addr which is used for mips32
and mips64. This had a number of problems:
1) Storing and loading byte and halfword quantities for mips16 has particular
problems due to the primarily non mips16 nature of SP. When we must
load/store byte/halfword stack objects in a function, we must create a mips16
alias register for SP. This functionality is tested in stchar.ll.
2) We need to have an FP register under certain conditions (such as
dynamically sized alloca). We use mips16 register S0 for this purpose.
In this case, we also use this register when accessing frame objects so this
issue also affects the complex pattern addr16. This functionality is
tested in alloca16.ll.
The Mips16InstrInfo.td has been updated to use addr16 instead of addr.
The complex pattern C++ function for addr has been copied to addr16 and
updated to reflect the above issues.
llvm-svn: 166897
This method emits nodes for passing byval arguments in registers and stack.
This has the same functionality as existing functions PassByValArg64 and
WriteByValArg which will be deleted later.
llvm-svn: 166843
This method copies byval arguments passed in registers onto the stack and has
the same functionality as existing functions CopyMips64ByValRegs and
ReadByValArg which will be deleted later.
llvm-svn: 166841
The TargetTransform changes are breaking LTO bootstraps of clang. I am
working with Nadav to figure out the problem, but I am reverting it for now
to get our buildbots working.
This reverts svn commits: 165665 165669 165670 165786 165787 165997
and I have also reverted clang svn 165741
llvm-svn: 166168
the interface between the front-end and the MC layer when parsing inline
assembly. Unfortunately, this is too deep into the parsing stack. Specifically,
we're unable to handle target-independent assembly (i.e., assembly directives,
labels, etc.). Note the MatchAndEmitInstruction() isn't the correct
abstraction either. I'll be exposing target-independent hooks shortly, so this
is really just a cleanup.
llvm-svn: 165858
Note: [D]M{T,F}CP2 is just a recommended encoding. Vendors often provide a
custom CP2 that interprets instructions differently and may wish to add their
own instructions that use this opcode. We should ensure that this is easy to
do. I will probably add a 'has custom CP{0-3}' subtarget flag to make this
easy: We want to avoid the GCC situation where every MIPS vendor makes a custom
fork that breaks every other MIPS CPU and so can't be merged upstream.
llvm-svn: 165711
This patch provides initial implementation of load address
macro instruction for Mips. We have implemented two kinds
of expansions with their variations depending on the size
of immediate operand:
1) load address with immediate value directly:
* la d,j => addiu d,$zero,j (for -32768 <= j <= 65535)
* la d,j => lui d,hi16(j)
ori d,d,lo16(j) (for any other 32 bit value of j)
2) load load address with register offset value
* la d,j(s) => addiu d,s,j (for -32768 <= j <= 65535)
* la d,j(s) => lui d,hi16(j) (for any other 32 bit value of j)
ori d,d,lo16(j)
addu d,d,s
This patch does not cover the case when the address is loaded
from the value of the label or function.
Contributer: Vladimir Medic
llvm-svn: 165561
macro instruction (li) in the assembler.
We have identified three possible expansions depending on
the size of immediate operand:
1) for 0 ≤ j ≤ 65535.
li d,j =>
ori d,$zero,j
2) for −32768 ≤ j < 0.
li d,j =>
addiu d,$zero,j
3) for any other value of j that is representable as a 32-bit integer.
li d,j =>
lui d,hi16(j)
ori d,d,lo16(j)
All of the above have been implemented in ths patch.
Contributer: Vladimir Medic
llvm-svn: 165199
.set option
The patch implements following options
at - lets the assembler use the $at register for macros,
but generates warnings if the source program uses $at
noat - let source programs use $at without issuingwarnings.
noreorder - prevents the assembler from reordering machine
language instructions.
nomacro - causes the assembler to print a warning whenever
an assembler operation generates more than one
machine language instruction.
macro - lets the assembler generate multiple machine instructions
from a single assembler instruction
reorder - lets the assembler reorder machine language
instructions to improve performance
The above variants are parsed and their boolean values set or unset.
The code to actually use them will come later.
Following options are not implemented yet:
nomips16
nomicromips
move
nomove
Contributer: Vladimir Medic
llvm-svn: 165194
for the number of bytes in a particular instruction
to using
const MCInstrDesc &Desc = MCII.get(TmpInst.getOpcode());
Desc.getSize()
This is necessary with the advent of 16 bit instructions with
mips16 and micromips. It is also puts Mips in compliance with
the other targets for getting instruction size.
llvm-svn: 165171
If the code is generated as assembler, this transformation does not occur assuming that it will occur later in the assembler.
This code was originally called from MipsAsmPrinter.cpp and we needed to check for OutStreamer.hasRawTextSupport(). This was not a good place for it and has been moved to MCTargetDesc/MipsMCCodeEmitter.cpp where both direct object and the assembler use it it automagically.
The test cases have been checked in for a number of weeks now.
llvm-svn: 165067
map constraints and MCInst operands to inline asm operands. This replaces the
getMCInstOperandNum() function.
The logic to determine the constraints are not in place, so we still default to
a register constraint (i.e., "r"). Also, we no longer build the MCInst but
rather return just the opcode to get the MCInstrDesc.
llvm-svn: 164979
2. As part of this, added assembly format FEXT_RI16_SP_explicit_ins and
moved other lines for FEXT_RI16 formats to be in the right place in the code.
3. Added mayLoad and mayStore assignements for the load/store instructions added and for ones already there that did not have this assignment.
4. Another patch will deal with the problem of load/store byte/halfword to the stack. This is a particular Mips16 problem.
llvm-svn: 164811
use load/store fragments defined in TargetSelectionDAG.td in place of them.
Unaligned loads/stores are either expanded or lowered to target-specific nodes,
so instruction selection should see only aligned load/store nodes.
No changes in functionality.
llvm-svn: 163960
* wrap code blocks in \code ... \endcode;
* refer to parameter names in paragraphs correctly (\arg is not what most
people want -- it starts a new paragraph);
* use \param instead of \arg to document parameters in order to be consistent
with the rest of the codebase.
llvm-svn: 163902
- BlockAddress has no support of BA + offset form and there is no way to
propagate that offset into machine operand;
- Add BA + offset support and a new interface 'getTargetBlockAddress' to
simplify target block address forming;
- All targets are modified to use new interface and X86 backend is enhanced to
support BA + offset addressing.
llvm-svn: 163743
The assembler can alias one instruction into another based
on the operands. For example the jump instruction "J" takes
and immediate operand, but if the operand is a register the
assembler will change it into a jump register "JR" instruction.
These changes are in the instruction td file.
Test cases included
Contributer: Vladimir Medic
llvm-svn: 163368
Actually these are just stubs for parsing the directives.
Semantic support will come later.
Test cases included
Contributer: Vladimir Medic
llvm-svn: 163364
assembler such as shifts greater than 32. In the case
of direct object, the code gen needs to do this lowering
since the assembler is not involved.
With the advent of the llvm-mc assembler, it also needs
to do the same lowering.
This patch makes that specific lowering code accessible
to both the direct object output and the assembler.
This patch does not affect generated output.
llvm-svn: 163287