A new first-party modeling for LLVM IR types in the LLVM dialect has been
developed in parallel to the existing modeling based on wrapping LLVM `Type *`
instances. It resolves the long-standing problem of modeling identified
structure types, including recursive structures, and enables future removal of
LLVMContext and related locking mechanisms from LLVMDialect.
This commit only switches the modeling by (a) renaming LLVMTypeNew to LLVMType,
(b) removing the old implementaiton of LLVMType, and (c) updating the tests. It
is intentionally minimal. Separate commits will remove the infrastructure built
for the transition and update API uses where appropriate.
Depends On D85020
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85021
This function-like operation allows one to define functions that have wrapped
LLVM IR function type, in particular variadic functions. The operation was
added in parallel to the existing lowering flow, this commit only switches the
flow to use it.
Using a custom function type makes the LLVM IR dialect type system more
consistent and avoids complex conversion rules for functions that previously
had to use the built-in function type instead of a wrapped LLVM IR dialect type
and perform conversions during the analysis.
PiperOrigin-RevId: 273910855
linalg_integration_test.mlir and simple.mlir were temporarily disabled due to an OSS-only failure.
The issue is that, once created, an llvm::Error must be explicitly checked before it can be discarded or overwritten.
This CL fixes the issue and reenable the test.
PiperOrigin-RevId: 271589651
The support for functions taking and returning memrefs of floats was introduced
in the first version of the runner, created before MLIR had reliable lowering
of allocation/deallocation to library calls. It forcibly runs MLIR
transformation convering affine, loop and standard dialects into the LLVM
dialect, unlike the other runner flows that accept the LLVM dialect directly.
Memref support leads to more complex layering and is generally fragile. Drop
it in favor of functions returning a scalar, or library-based function calls to
print memrefs and other data structures.
PiperOrigin-RevId: 271330839
- the list of passes run by mlir-cpu-runner included -lower-affine and
-lower-to-llvm but was missing -lower-to-cfg (because -lower-affine at
some point used to lower straight to CFG); add -lower-to-cfg in
between. IR with affine ops can now be run by mlir-cpu-runner.
- update -lower-to-cfg to be consistent with other passes (create*Pass methods
were changed to return unique ptrs, but -lower-to-cfg appears to have been
missed).
- mlir-cpu-runner was unable to parse custom form of affine op's - fix
link options
- drop unnecessary run options from test/mlir-cpu-runner/simple.mlir
(none of the test cases had loops)
- -convert-to-llvmir was changed to -lower-to-llvm at some point, but the
create pass method name wasn't updated (this pass converts/lowers to LLVM
dialect as opposed to LLVM IR). Fix this.
(If we prefer "convert", the cmd-line options could be changed to
"-convert-to-llvm/cfg" then.)
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#115
PiperOrigin-RevId: 266666909
This commit introduces the bits to be able to dump JIT-compile
objects to external files by passing an object cache to OrcJit.
The new functionality is tested in mlir-cpu-runner under the flag
`dump-object-file`.
Closestensorflow/mlir#95
PiperOrigin-RevId: 266439265
Original implementation of OutUtils provided two different LLVM IR module
transformers to be used with the MLIR ExecutionEngine: OptimizingTransformer
parameterized by the optimization levels (similar to -O3 flags) and
LLVMPassesTransformer parameterized by the string formatted similarly to
command line options of LLVM's "opt" tool without support for -O* flags.
Introduce such support by declaring the flags inside the parser and by
populating the pass managers similarly to what "opt" does. Remove the
additional flags from mlir-cpu-runner as they can now be wrapped into
`-llvm-opts` together with other LLVM-related flags.
PiperOrigin-RevId: 236107292
A recent change introduced a possibility to run LLVM IR transformation during
JIT-compilation in the ExecutionEngine. Provide helper functions that
construct IR transformers given either clang-style optimization levels or a
list passes to run. The latter wraps the LLVM command line option parser to
parse strings rather than actual command line arguments. As a result, we can
run either of
mlir-cpu-runner -O3 input.mlir
mlir-cpu-runner -some-mlir-pass -llvm-opts="-llvm-pass -other-llvm-pass"
to combine different transformations. The transformer builder functions are
provided as a separate library that depends on LLVM pass libraries unlike the
main execution engine library. The library can be used for integrating MLIR
execution engine into external frameworks.
PiperOrigin-RevId: 234173493
This implements a simple CPU runner based on LLVM Orc JIT. The base
functionality is provided by the ExecutionEngine class that compiles and links
the module, and provides an interface for obtaining function pointers to the
JIT-compiled MLIR functions and for invoking those functions directly. Since
function pointers need to be casted to the correct pointer type, the
ExecutionEngine wraps LLVM IR functions obtained from MLIR into a helper
function with the common signature `void (void **)` where the single argument
is interpreted as a list of pointers to the actual arguments passed to the
function, eventually followed by a pointer to the result of the function.
Additionally, the ExecutionEngine is set up to resolve library functions to
those available in the current process, enabling support for, e.g., simple C
library calls.
For integration purposes, this also provides a simplistic runtime for memref
descriptors as expected by the LLVM IR code produced by MLIR translation. In
particular, memrefs are transformed into LLVM structs (can be mapped to C
structs) with a pointer to the data, followed by dynamic sizes. This
implementation only supports statically-shaped memrefs of type float, but can
be extened if necessary.
Provide a binary for the runner and a test that exercises it.
PiperOrigin-RevId: 230876363