Test dependent on pexpect fail randomly with timeouts on Arm/AArch64 Linux
buildbots. I am setting pexpect timeout from 30 to 60.
I will revert this back if this doesnt improve random failures.
This reverts commit fd18f0e84c.
I reverted this change to see its effect on failing GUI tests on LLDB
Arm/AArch64 Linux buildbots. I could not find any evidence against this
particular change so reverting it back.
Differential Revision: https://reviews.llvm.org/D100243
Following tests have been failing randomly on LLDB Arm and AArch64 Linux
builtbots:
TestMultilineNavigation.py
TestMultilineCompletion.py
TestIOHandlerCompletion.py
TestGuiBasic.py
I have increased allocated CPU resources to these bots but it has not
improved situation to an acceptable level. This patch marks them as
skipped on Arm/AArch64 for now.
Change `ThreadPlanStack::PopPlan` and `::DiscardPlan` to not do the following:
1. Move the last plan, leaving a moved `ThreadPlanSP` in the plans vector
2. Operate on the last plan
3. Pop the last plan off the plans vector
This leaves a period of time where the last element in the plans vector has been moved. I am not sure what, if any, guarantees there are when doing this, but it seems like it would/could leave a null `ThreadPlanSP` in the container. There are asserts in place to prevent empty/null `ThreadPlanSP` instances from being pushed on to the stack, and so this could break that invariant during multithreaded access to the thread plan stack.
An open question is whether this use of `std::move` was the result of a measure performance problem.
Differential Revision: https://reviews.llvm.org/D106171
This change makes sure that DwarfUnit does not load a .dwo file until
necessary. I also take advantage of DWARF 5's guarantee that the first
support file is also the primary file to make it possible to create
a compile unit without loading the .dwo file.
Testcases now require Linux as it is needed for -gsplit-dwarf.
Review By: jankratochvil, dblaikie
Differential Revision: https://reviews.llvm.org/D100299
This change makes sure that DwarfUnit does not load a .dwo file until
necessary. I also take advantage of DWARF 5's guarantee that the first
support file is also the primary file to make it possible to create
a compile unit without loading the .dwo file.
Review By: jankratochvil, dblaikie
Differential Revision: https://reviews.llvm.org/D100299
Update ARMGetSupportedArchitectureAtIndex to consider remote macOS
debugging. Currently, it defaults to an iOS triple when IsHost() returns
false. This fixes TestPlatformSDK.py on Apple Silicon.
Differential revision: https://reviews.llvm.org/D107179
Always codesign binaries on macOS. Apple Silicon has stricter
codesigning requirements, for example requiring macCatalyst binaries to
be signed. Ad-hoc sign everything like we do for other Darwin platforms.
This change makes sure that DwarfUnit does not load a .dwo file until
necessary. I also take advantage of DWARF 5's guarantee that the first
support file is also the primary file to make it possible to create
a compile unit without loading the .dwo file.
Review By: jankratochvil, dblaikie
Differential Revision: https://reviews.llvm.org/D100299
The "memory tag read" command will now tell you
when the allocation tag read does not match the logical
tag.
(lldb) memory tag read mte_buf+(8*16) mte_buf+(8*16)+48
Logical tag: 0x9
Allocation tags:
[0xfffff7ff7080, 0xfffff7ff7090): 0x8 (mismatch)
[0xfffff7ff7090, 0xfffff7ff70a0): 0x9
[0xfffff7ff70a0, 0xfffff7ff70b0): 0xa (mismatch)
The logical tag will be taken from the start address
so the end could have a different tag. You could for example
read from ptr_to_array_1 to ptr_to_array_2. Where the latter
is tagged differently to prevent buffer overflow.
The existing command will read 1 granule if you leave
off the end address. So you can also use it as a quick way
to check a single location.
(lldb) memory tag read mte_buf
Logical tag: 0x9
Allocation tags:
[0xfffff7ff7000, 0xfffff7ff7010): 0x0 (mismatch)
This avoids the need for a seperate "memory tag check" command.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D106880
The type field is a signed integer.
(https://sourceware.org/gdb/current/onlinedocs/gdb/General-Query-Packets.html)
However it's not packed in the packet in the way
you might think. For example the type -1 should be:
qMemTags:<addr>,<len>:ffffffff
Instead of:
qMemTags:<addr>,<len>:-1
This change makes lldb-server's parsing more strict
and adds more tests to check that we handle negative types
correctly in lldb and lldb-server.
We only support one tag type value at this point,
for AArch64 MTE, which is positive. So this doesn't change
any of those interactions. It just brings us in line with GDB.
Also check that the test target has MTE. Previously
we just checked that we were AArch64 with a toolchain
that supports MTE.
Finally, update the tag type check for QMemTags to use
the same conversion steps that qMemTags now does.
Using static_cast can invoke UB and though we do do a limit
check to avoid this, I think it's clearer with the new method.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D104914
This reverts commit fed25ddc1c.
There has been sporadic failures in LLDB AArch64/Arm 32 buildbots since
this commit. I am temporarily reverting it see if it fixes the issue.
Differential Revision: https://reviews.llvm.org/D100243
Renamed language standard from openclcpp to openclcpp10.
Added new std values i.e. '-cl-std=clc++1.0' and
'-cl-std=CLC++1.0'.
Patch by Topotuna (Justas Janickas)!
Differential Revision: https://reviews.llvm.org/D106266
https://reviews.llvm.org/D45592 added a nice feature to be able to specify a breakpoint by a relative path. E.g. passing foo.cpp or bar/foo.cpp or zaz/bar/foo.cpp is fine. However, https://reviews.llvm.org/D68671 by mistake disabled the test that ensured this functionality works. With time, someone made a small mistake and fully broke the functionality.
So, I'm making a very simple fix and the test passes.
Differential Revision: https://reviews.llvm.org/D107126
The only remaining plugin dependency in Mangled is CPlusPlusLanguage which it
uses to extract information from C++ mangled names. The static function
GetDemangledNameWithoutArguments is written specifically for C++, so it
would make sense for this specific functionality to live in a
C++-related plugin. In order to keep this functionality in Mangled
without maintaining this dependency, I added
`Language::GetDemangledFunctionNameWithoutArguments`.
Differential Revision: https://reviews.llvm.org/D105215
This patch adds an environment variable field. This is usually used as
the basic type of a List field. This is needed to create the process
launch form.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D106999
This patch adds a Create Target form for the LLDB GUI. Additionally, an
Arch Field was introduced to input an arch and the file and directory
fields now have a required property.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D106192
If we succeed at gathering global variables for a compile
unit, there is no need to fallback to generating a manual index.
Reviewed By: jankratochvil
Differential Revision: https://reviews.llvm.org/D106355
In the latest Linux kernels synchronous tag faults
include the tag bits in their address.
This change adds logical and allocation tags to the
description of synchronous tag faults.
(asynchronous faults have no address)
Process 1626 stopped
* thread #1, name = 'a.out', stop reason = signal SIGSEGV: sync tag check fault (fault address: 0x900fffff7ff9010 logical tag: 0x9 allocation tag: 0x0)
This extends the existing description and will
show as much as it can on the rare occasion something
fails.
This change supports AArch64 MTE only but other
architectures could be added by extending the
switch at the start of AnnotateSyncTagCheckFault.
The rest of the function is generic code.
Tests have been added for synchronous and asynchronous
MTE faults.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D105178
This diff introduces Hierarchical Trace Representation (HTR) and creates the `thread trace export ctf -f <filename> -t <thread_id>` command to export an Intel PT trace's HTR to Chrome Trace Format (CTF) for visualization.
See `lldb/docs/htr.rst` for context/documentation on HTR.
**Overview of Changes**
- Add HTR documentation (see `lldb/docs/htr.rst`)
- Add HTR structures (layer, block, block metadata)
- Implement "Basic Super Block" HTR pass
- Add 'thread trace export ctf' command to export the HTR of an Intel PT
trace to Chrome Trace Format (CTF)
As this diff is the first iteration of HTR and trace visualization, future diffs will build on this work by generalizing the internal design of HTR and implementing new HTR passes that provide better trace summarization/visualization.
See attached video for an example of Intel PT trace visualization:
{F17851042}
Original Author: jj10306
Submitted by: wallace
Reviewed By: wallace, clayborg
Differential Revision: https://reviews.llvm.org/D105741
This diff introduces Hierarchical Trace Representation (HTR) and creates the `thread trace export ctf -f <filename> -t <thread_id>` command to export an Intel PT trace's HTR to Chrome Trace Format (CTF) for visualization.
See `lldb/docs/htr.rst` for context/documentation on HTR.
**Overview of Changes**
- Add HTR documentation (see `lldb/docs/htr.rst`)
- Add HTR structures (layer, block, block metadata)
- Implement "Basic Super Block" HTR pass
- Add 'thread trace export ctf' command to export the HTR of an Intel PT
trace to Chrome Trace Format (CTF)
As this diff is the first iteration of HTR and trace visualization, future diffs will build on this work by generalizing the internal design of HTR and implementing new HTR passes that provide better trace summarization/visualization.
See attached video for an example of Intel PT trace visualization:
{F17851042}
Original Author: jj10306
Submitted by: wallace
Reviewed By: wallace, clayborg
Differential Revision: https://reviews.llvm.org/D105741
The default mode of "memory tag write" is to calculate the
range from the start address and the number of tags given.
(just like "memory write" does)
(lldb) memory tag write mte_buf 1 2
(lldb) memory tag read mte_buf mte_buf+48
Logical tag: 0x0
Allocation tags:
[0xfffff7ff9000, 0xfffff7ff9010): 0x1
[0xfffff7ff9010, 0xfffff7ff9020): 0x2
[0xfffff7ff9020, 0xfffff7ff9030): 0x0
This new option allows you to set an end address and have
the tags repeat until that point.
(lldb) memory tag write mte_buf 1 2 --end-addr mte_buf+64
(lldb) memory tag read mte_buf mte_buf+80
Logical tag: 0x0
Allocation tags:
[0xfffff7ff9000, 0xfffff7ff9010): 0x1
[0xfffff7ff9010, 0xfffff7ff9020): 0x2
[0xfffff7ff9020, 0xfffff7ff9030): 0x1
[0xfffff7ff9030, 0xfffff7ff9040): 0x2
[0xfffff7ff9040, 0xfffff7ff9050): 0x0
This is implemented using the QMemTags packet previously
added. We skip validating the number of tags in lldb and send
them on to lldb-server, which repeats them as needed.
Apart from the number of tags, all the other client side checks
remain. Tag values, memory range must be tagged, etc.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D105183
TestGuiBasicDebug.py randomly fails due to timeouts sending out false
negatives on LLDB Arm and AArch64 Linux buildbots. I havnt found a
reliable wayy to set pexpect timeout for this test to pass regularly.
Skipping it on Arm and AArch64 Linux to silence buildbot failures.
This adds a new command for writing memory tags.
It is based on the existing "memory write" command.
Syntax: memory tag write <address-expression> <value> [<value> [...]]
(where "value" is a tag value)
(lldb) memory tag write mte_buf 1 2
(lldb) memory tag read mte_buf mte_buf+32
Logical tag: 0x0
Allocation tags:
[0xfffff7ff9000, 0xfffff7ff9010): 0x1
[0xfffff7ff9010, 0xfffff7ff9020): 0x2
The range you are writing to will be calculated by
aligning the address down to a granule boundary then
adding as many granules as there are tags.
(a repeating mode with an end address will be in a follow
up patch)
This is why "memory tag write" uses MakeTaggedRange but has
some extra steps to get this specific behaviour.
The command does all the usual argument validation:
* Address must evaluate
* You must supply at least one tag value
(though lldb-server would just treat that as a nop anyway)
* Those tag values must be valid for your tagging scheme
(e.g. for MTE the value must be > 0 and < 0xf)
* The calculated range must be memory tagged
That last error will show you the final range, not just
the start address you gave the command.
(lldb) memory tag write mte_buf_2+page_size-16 6
(lldb) memory tag write mte_buf_2+page_size-16 6 7
error: Address range 0xfffff7ffaff0:0xfffff7ffb010 is not in a memory tagged region
(note that we do not check if the region is writeable
since lldb can write to it anyway)
The read and write tag tests have been merged into
a single set of "tag access" tests as their test programs would
have been almost identical.
(also I have renamed some of the buffers to better
show what each one is used for)
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D105182
The old code incorrectly calculated the start position for the search
for the third (and subsequent) instance of a particular substitution
pattern (e.g. %1).
I also added a few test cases for this parsing covering this failure.
This is a resubmission of https://reviews.llvm.org/D105160 after fixing testing issues.
This fix was created after profiling the target creation of a large C/C++/ObjC application that contained almost 4,000,000 redacted symbol names. The symbol table parsing code was creating names for each of these synthetic symbols and adding them to the name indexes. The code was also adding the object file basename to the end of the symbol name which doesn't allow symbols from different shared libraries to share the names in the constant string pool.
Prior to this fix this was creating 180MB of "___lldb_unnamed_symbol" symbol names and was taking a long time to generate each name, add them to the string pool and then add each of these names to the name index.
This patch fixes the issue by:
not adding a name to synthetic symbols at creation time, and allows name to be dynamically generated when accessed
doesn't add synthetic symbol names to the name indexes, but catches this special case as name lookup time. Users won't typically set breakpoints or lookup these synthetic names, but support was added to do the lookup in case it does happen
removes the object file baseanme from the generated names to allow the names to be shared in the constant string pool
Prior to this fix the startup times for a large application was:
12.5 seconds (cold file caches)
8.5 seconds (warm file caches)
After this fix:
9.7 seconds (cold file caches)
5.7 seconds (warm file caches)
The names of the symbols are auto generated by appending the symbol's UserID to the end of the "___lldb_unnamed_symbol" string and is only done when the name is requested from a synthetic symbol if it has no name.
Differential Revision: https://reviews.llvm.org/D106837
Process::HandleStateChangedEvent, we check whether a thread stopped
for eStopReasonSignal is stopped for a signal that's currently set to
"no-stop". If it is, then we don't set that thread as the currently
selected thread.
But that only happens in the part of the algorithm that's handling the
case where the previously selected thread has no stop reason. Since we
want to keep on a thread as long as it is doing something interesting,
we always prefer the current thread. That's almost right, but we
forgot to check whether the previously selected thread stopped with an
eStopReasonSignal for a "no-stop" signal. If it did, then we shouldn't
select it.
This patch adds that check. I can't figure out a good way to test
this. This is the sort of thing that Ismail's scripted process plugin
will make easy once it is a real boy. But figuring out how to do this
in a real process is not trivial.
Differential Revision: https://reviews.llvm.org/D106712
The code that figured out which breakpoints to delete was supposed
to set the result status if it found breakpoints, and then the code
that actually deleted them checked that the result's status was set.
The code for "break delete --disabled" failed to set the status if
no "protected" breakpoints were provided. This was a confusing way
to implement this, so I reworked it with early returns so it was less
error prone, and added a test case for the no arguments case.
Differential Revision: https://reviews.llvm.org/D106623
This adds memory tag writing to Process and the
GDB remote code. Supporting work for the
"memory tag write" command. (to follow)
Process WriteMemoryTags is similair to ReadMemoryTags.
It will pack the tags then call DoWriteMemoryTags.
That function will send the QMemTags packet to the gdb-remote.
The QMemTags packet follows the GDB specification in:
https://sourceware.org/gdb/current/onlinedocs/gdb/General-Query-Packets.html#General-Query-Packets
Note that lldb-server will be treating partial writes as
complete failures. So lldb doesn't need to handle the partial
write case in any special way.
Reviewed By: omjavaid
Differential Revision: https://reviews.llvm.org/D105181