In particular (since it wouldn't fit nicely in the summary):
(select (icmp eq V 0) P (getelementptr P V)) -> (getelementptr P V)
Differential Revision: https://reviews.llvm.org/D31435
llvm-svn: 301880
This tracks whether MaxCallFrameSize is computed yet. Ideally we would
assert and fail when the value is queried before it is computed, however
this fails various targets that need to be fixed first.
Differential Revision: https://reviews.llvm.org/D32570
llvm-svn: 301851
In the testcase attached, we believe %tmp1 implies %tmp4.
where:
br i1 %tmp1, label %bb2, label %bb7
br i1 %tmp4, label %bb5, label %bb7
because Wwhile looking at PredicateInfo stuffs we end up calling
isImpliedTrueByMatchingCmp() with the arguments backwards.
Differential Revision: https://reviews.llvm.org/D32718
llvm-svn: 301849
If we have ~(~X & Y), it only makes sense to transform it to (X | ~Y) when we do not need
the intermediate (~X & Y) value. In that case, we would need an extra instruction to
generate ~Y + 'or' (as shown in the test changes).
It's ok if we have multiple uses of ~X or Y, however. In those cases, we may not reduce the
instruction count or critical path, but we might improve throughput because we can generate
~X and ~Y in parallel. Whether that actually makes perf sense or not for a target is something
we can't answer in IR.
Differential Revision: https://reviews.llvm.org/D32703
llvm-svn: 301848
If a file has no diagnostic pragmas, we build its diagnostic state lazily, but
in this case we never set up the root state to be the diagnostic state in which
the module was originally built, so the diagnostic flags for files in the
module with no diagnostic pragmas were incorrectly based on the user of the
module rather than the diagnostic state when the module was built.
llvm-svn: 301846
lldb-dwarfdump gets a new "--verify" option that will verify a single file's DWARF debug info and will print out any errors that it finds. It will return an non-zero exit status if verification fails, and a zero exit status if verification succeeds. Adding the --quiet option will suppress any output the STDOUT or STDERR.
The first part of the verify does the following:
- verifies that all CU relative references (DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8, DW_FORM_ref_udata) have valid CU offsets
- verifies that all DW_FORM_ref_addr references have valid .debug_info offsets
- verifies that all DW_AT_ranges attributes have valid .debug_ranges offsets
- verifies that all DW_AT_stmt_list attributes have valid .debug_line offsets
- verifies that all DW_FORM_strp attributes have valid .debug_str offsets
Unit tests were added for each of the above cases.
Differential Revision: https://reviews.llvm.org/D32707
llvm-svn: 301844
This is to prepare for an upcoming change which uses pointers instead of
GUIDs to represent references.
Differential Revision: https://reviews.llvm.org/D32469
llvm-svn: 301843
We were using operator=(0) which implicitly calls countLeadingZeros but only to compare with 64 to determine if we can compare VAL or pVal[0] to uint64_t. By handling the multiword case with countLeadingZerosSlowCase==BitWidth we can prevent a load of pVal[0] from being inserted inline at each call site. This saves a little bit of code size.
llvm-svn: 301842
These tests do not appear to be Darwin-specific, and this REQUIRES: appears to
be hiding a real bug; this change is just restoring the prior state to get the
buildbots happy again while we investigate. (The system-darwin requirement is
covered by PR32851.)
llvm-svn: 301840
This makes it possible to get stacktrace info when print_stacktrace=1 on
Darwin (where the slow unwinder is not currently supported [1]). This
should not regress any other platforms.
[1] The thread about r300295 has a relatively recent discusion about
this. We should be able to enable the existing slow unwind functionality
for Darwin, but this needs more testing.
Differential Revision: https://reviews.llvm.org/D32517
llvm-svn: 301839
When using linkerscripts we were trying to sort SHF_LINK_ORDER
sections too early. Instead of always doing two runs of
assignAddresses, record the section order in processCommands.
llvm-svn: 301830
Do not spuriously reject constexpr functions that access elements of an array
of unknown bound; this may later become valid once the bound is known. Permit
array-to-pointer decay on such arrays, but disallow pointer arithmetic (since
we do not know whether it will have defined behavior).
The standard is not clear on how this should work, but this seems to be a
decent answer.
Patch by Robert Haberlach!
llvm-svn: 301822
This was an omission in r301813. I had made the supporting changes to
make this happen, but I forgot to actually update the PrevPair
declaration.
llvm-svn: 301817
We may not be able to rewrite indirect branch target, but we also want to take it into
account when folding, i.e. if it and all its successor's predecessors go to the same
destination, we can fold, i.e. no need to thread.
llvm-svn: 301816
In cases where an instruction (a call site, say) is RAUW'ed with some
other value (this is possible via the `returned` attribute, for
instance), we want the slot in UnknownInsts to point to the original
Instruction we wanted to track, not the value it got replaced by.
Fixes PR32587.
This relands r301426.
llvm-svn: 301814
In preparation for introducing writing capabilities for each of
these classes, I would like to adopt a Foo / FooRef naming
convention, where Foo indicates that the class can manipulate and
serialize Foos, and FooRef indicates that it is an immutable view of
an existing Foo. In other words, Foo is a writer and FooRef is a
reader. This patch names some existing readers to conform to the
FooRef convention, while offering no functional change.
llvm-svn: 301810