iff its substitution contains an unexpanded parameter pack. This has the effect
that we now reject declarations such as this (which we used to crash when
expanding):
template<typename T> using Int = int;
template<typename ...Ts> void f(Int<Ts> ...ints);
The standard is inconsistent on how this case should be treated.
llvm-svn: 148905
for it to be used in converted constant expression checking, and fix a couple
of issues:
- Conversion operators implicitly invoked prior to the narrowing conversion
were not being correctly handled when determining whether a constant value
was narrowed.
- For conversions from floating-point to integral types, the diagnostic text
incorrectly always claimed that the source expression was not a constant
expression.
llvm-svn: 148381
for FunctionDecl::getMemoryFunctionKind().
This is a follow up on the Chris's review for r148142: We don't want to
pollute FunctionDecl with an extra enum. (To make this work, added
memcmp and family to the library builtins.)
llvm-svn: 148267
- Add atomic-to/from-nonatomic cast types
- Emit atomic operations for arithmetic on atomic types
- Emit non-atomic stores for initialisation of atomic types, but atomic stores and loads for every other store / load
- Add a __atomic_init() intrinsic which does a non-atomic store to an _Atomic() type. This is needed for the corresponding C11 stdatomic.h function.
- Enables the relevant __has_feature() checks. The feature isn't 100% complete yet, but it's done enough that we want people testing it.
Still to do:
- Make the arithmetic operations on atomic types (e.g. Atomic(int) foo = 1; foo++;) use the correct LLVM intrinsic if one exists, not a loop with a cmpxchg.
- Add a signal fence builtin
- Properly set the fenv state in atomic operations on floating point values
- Correctly handle things like _Atomic(_Complex double) which are too large for an atomic cmpxchg on some platforms (this requires working out what 'correctly' means in this context)
- Fix the many remaining corner cases
llvm-svn: 148242
protocol, record the definition pointer in the canonical declaration
for that entity, and then propagate that definition pointer from the
canonical declaration to all other deserialized declarations. This
approach works well even when deserializing declarations that didn't
know about the original definition, which can occur with modules.
A nice bonus from this definition-deserialization approach is that we
no longer need update records when a definition is added, because the
redeclaration chains ensure that the if any declaration is loaded, the
definition will also get loaded.
llvm-svn: 148223
we have a redeclarable type, and only use the new virtual versions
(getPreviousDeclImpl() and getMostRecentDeclImpl()) when we don't have
that type information. This keeps us from penalizing users with strict
type information (and is the moral equivalent of a "final" method).
Plus, settle on the names getPreviousDecl() and getMostRecentDecl()
throughout.
llvm-svn: 148187
Redeclarable<RedeclarableTemplateDecl>, eliminating a bunch of
redeclaration-chain logic both in RedeclarableTemplateDecl and
especially in its (de-)serialization.
As part of this, eliminate the RedeclarableTemplate<> class template,
which was an abstraction that didn't actually save anything.
llvm-svn: 148181
APValue::Array and APValue::MemberPointer. All APValue values can now be emitted
as constants.
Add new CGCXXABI entry point for emitting an APValue MemberPointer. The other
entrypoints dealing with constant member pointers are no longer necessary and
will be removed in a later change.
Switch codegen from using EvaluateAsRValue/EvaluateAsLValue to
VarDecl::evaluateValue. This performs caching and deals with the nasty cases in
C++11 where a non-const object's initializer can refer indirectly to
previously-initialized fields within the same object.
Building the intermediate APValue object incurs a measurable performance hit on
pathological testcases with huge initializer lists, so we continue to build IR
directly from the Expr nodes for array and record types outside of C++11.
llvm-svn: 148178
With that, centralize the way we merge visibility, always preferring explicit over
implicit and then picking the most restrictive one.
Fixes pr10113 and pr11690.
llvm-svn: 148163
zero-initialize the first union member. Also fix a bug where initializing an
array of types compatible with wchar_t from a wide string literal failed in C,
and fortify the C++ tests in this area. This part can't be tested without a code
change to enable array evaluation in C (where an existing test fails).
llvm-svn: 148035
was constructed, e.g. for a property access.
This allows the selector identifier locations machinery for ObjCMessageExpr
to function correctly, in that there are not real locations to handle/report for
such a message.
llvm-svn: 148013
modules. Teach name lookup into namespaces to search in each of the
merged DeclContexts as well as the (now-primary) DeclContext. This
supports the common case where two different modules put something
into the same namespace.
llvm-svn: 147778
to Redeclarable<NamespaceDecl>, so that we benefit from the improveed
redeclaration deserialization and merging logic provided by
Redeclarable<T>. Otherwise, no functionality change.
As a drive-by fix, collapse the "inline" bit into the low bit of the
original namespace/anonymous namespace, saving 8 bytes per
NamespaceDecl on x86_64.
llvm-svn: 147729
into the two unused lower bits of the NextDeclInContext link, dropping
the number of bits in Decl down to 32, and saving 8 bytes per
declaration on x86-64.
llvm-svn: 147660
pointer-arithmetic-related undefined behavior and unspecified results. We
continue to fold such values, but now notice they aren't constant expressions.
llvm-svn: 147659