When the last instruction prior to a function epilogue is a call, we
need to emit a nop so that the return address is not in the epilogue IP
range. This is consistent with MSVC's behavior, and may be a workaround
for a bug in the Win64 unwinder.
Differential Revision: http://reviews.llvm.org/D4751
Patch by Vadim Chugunov!
llvm-svn: 214775
Stop using ST registers for function returns and inline-asm instructions and use
FP registers instead. This allows removing a large amount of code in the
stackifier pass that was needed to track register liveness and handle copies
between ST and FP registers and function calls returning floating point values.
It also fixes a bug which manifests when an ST register defined by an
inline-asm instruction was live across another inline-asm instruction, as shown
in the following sequence of machine instructions:
1. INLINEASM <es:frndint> $0:[regdef], %ST0<imp-def,tied5>
2. INLINEASM <es:fldcw $0>
3. %FP0<def> = COPY %ST0
<rdar://problem/16952634>
llvm-svn: 214580
The logic for expanding atomics that aren't natively supported in
terms of cmpxchg loops is much simpler to express at the IR level. It
also allows the normal optimisations and CodeGen improvements to help
out with atomics, instead of using a limited set of possible
instructions..
rdar://problem/13496295
llvm-svn: 212119
--
This patch enables LLVM to emit Win64-native unwind info rather than
DWARF CFI. It handles all corner cases (I hope), including stack
realignment.
Because the unwind info is not flexible enough to describe stack frames
with a gap of unknown size in the middle, such as the one caused by
stack realignment, I modified register spilling code to place all spills
into the fixed frame slots, so that they can be accessed relative to the
frame pointer.
Patch by Vadim Chugunov!
Reviewed By: rnk
Differential Revision: http://reviews.llvm.org/D4081
llvm-svn: 211691
This patch enables LLVM to emit Win64-native unwind info rather than
DWARF CFI. It handles all corner cases (I hope), including stack
realignment.
Because the unwind info is not flexible enough to describe stack frames
with a gap of unknown size in the middle, such as the one caused by
stack realignment, I modified register spilling code to place all spills
into the fixed frame slots, so that they can be accessed relative to the
frame pointer.
Patch by Vadim Chugunov!
Reviewed By: rnk
Differential Revision: http://reviews.llvm.org/D4081
llvm-svn: 211399
According to Intel Software Optimization Manual
on Silvermont INC or DEC instructions require
an additional uop to merge the flags.
As a result, a branch instruction depending
on an INC or a DEC instruction incurs a 1 cycle penalty.
Differential Revision: http://reviews.llvm.org/D3990
llvm-svn: 210466
Extend what's currently done for shift because the HW performs this masking
implicitly:
(rotl:i32 x, (and y, 31)) -> (rotl:i32 x, y)
I use the newly factored out multiclass that was only supporting shifts so
far.
For testing I extended my testcase for the new rotation idiom.
<rdar://problem/15295856>
llvm-svn: 203718
The peephole (shift x, (and y, 31)) -> (shift x, y) is repeated for each
integer type and each shift variant.
To improve this a new multiclass is added that covers all integer types. The
shift patterns are now instantiated from this. I am planning to add new
instances for rotates as well.
No functional change intended:
* test/CodeGen/X86/shift-and.ll provides coverage
* Compared the expanded tablegen output and matched up the defs for these
Pat<>s before and after
llvm-svn: 203685
When the MOVBE instructions are available, use them for 16-bit endian
swapping as well as for 32 and 64 bit.
The patterns were already present on the instructions, but weren't being
matched because the operation was unconditionally marked to 'Expand.'
Change that to be conditional on whether the MOVBE instructions are
available. Use 'rolw' to implement the in-register version (32 and 64
bit have the dedicated 'bswap' instruction for that).
Patch by Louis Gerbarg <lgg@apple.com>.
rdar://15479984
llvm-svn: 203524
This fixes the bulk of 16-bit output, and the corresponding test case
x86-16.s now looks mostly like the x86-32.s test case that it was
originally based on. A few irrelevant instructions have been dropped,
and there are still some corner cases to be fixed in subsequent patches.
llvm-svn: 198752
That's what it actually means, and with 16-bit support it's going to be
a little more relevant since in a few corner cases we may actually want
to distinguish between 16-bit and 32-bit mode (for example the bare 'push'
aliases to pushw/pushl etc.)
Patch by David Woodhouse
llvm-svn: 197768
This reverts commit r197481, recommiting r197469 with an extra fix.
The vastart_save_xmm_regs pseudo-instruction expands to a test and a
branch, so it modifies EFLAGS. Mark it so, or else the scheduler might
place it in the middle of another test+branch.
This fixes a bug exposed by r192750, which changed the initial scheduler
to source-order as part of enabling the MI Scheduler for X86.
This re-commit changes the VASTART_SAVE_XMM_REGS custom inserter not to
try to save %flags, and adds a test that catches the bad behavior of
r197469.
<rdar://problem/15627766>
llvm-svn: 197503
This reverts commit r197469.
The sanitizer and dragonegg buildbots are failing, I think because of
this change. Reverting until I figure out why.
llvm-svn: 197481
The vastart_save_xmm_regs pseudo-instruction expands to a test and a
branch, so it modifies EFLAGS. Mark it so, or else the scheduler might
place it in the middle of another test+branch.
This fixes a bug exposed by r192750, which turned on the MI Scheduler
for X86.
<rdar://problem/15627766>
llvm-svn: 197469
a) x86-64 TLS has been documented
b) the code path should use movq for the correct relocation
to be generated.
I've also added a fixme for the test case that we should improve
the code generated, it should look something like is documented
in the tls abi document.
llvm-svn: 192631
The MOV64ri64i32 instruction required hacky MCInst lowering because it
was allocated as setting a GR64, but the eventual instruction ("movl")
only set a GR32. This converts it into a so-called "MOV32ri64" which
still accepts a (appropriate) 64-bit immediate but defines a GR32.
This is then converted to the full GR64 by a SUBREG_TO_REG operation,
thus keeping everyone happy.
This fixes a typo in the opcode field of the original patch, which
should make the legact JIT work again (& adds test for that problem).
llvm-svn: 183068
The MOV64ri64i32 instruction required hacky MCInst lowering because it was
allocated as setting a GR64, but the eventual instruction ("movl") only set a
GR32. This converts it into a so-called "MOV32ri64" which still accepts a
(appropriate) 64-bit immediate but defines a GR32. This is then converted to
the full GR64 by a SUBREG_TO_REG operation, thus keeping everyone happy.
llvm-svn: 182991
Instead of having a bunch of separate MOV8r0, MOV16r0, ... pseudo-instructions,
it's better to use a single MOV32r0 (which will expand to "xorl %reg, %reg")
and obtain other sizes with EXTRACT_SUBREG and SUBREG_TO_REG. The encoding is
smaller and partial register updates can sometimes be avoided.
Until recently, this sequence was a barrier to rematerialization though. That
should now be fixed so it's an appropriate time to make the change.
llvm-svn: 182928
32-bit writes on amd64 zero out the high bits of the corresponding 64-bit
register. LLVM makes use of this for zero-extension, but until now relied on
custom MCLowering and other code to fixup instructions. Now we have proper
handling of sub-registers, this can be done by creating SUBREG_TO_REG
instructions at selection-time.
Should be no change in functionality.
llvm-svn: 182921
def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))),
(MOV64rm tglobaltlsaddr :$dst)>;
This pattern is invalid because the MOV64rm instruction expects a
source operand of type "i64mem", which is a subclass of X86MemOperand
and thus actually consists of five MI operands, but the Pat provides
only a single MI operand ("tglobaltlsaddr" matches an SDnode of
type ISD::TargetGlobalTLSAddress and provides a single output).
Thus, if the pattern were ever matched, subsequent uses of the MOV64rm
instruction pattern would access uninitialized memory. In addition,
with the TableGen patch I'm about to check in, this would actually be
reported as a build-time error.
Fortunately, the pattern does in fact never match, for at least two
independent reasons.
First, the code generator actually never generates a pattern of the
form (load (X86Wrapper (tglobaltlsaddr))). For most combinations of
TLS and code models, (tglobaltlsaddr) represents just an offset that
needs to be added to some base register, so it is never directly
dereferenced. The only exception is the initial-exec model, where
(tglobaltlsaddr) refers to the (pc-relative) address of a GOT slot,
which *is* in fact directly dereferenced: but in that case, the
X86WrapperRIP node is used, not X86Wrapper, so the Pat doesn't match.
Second, even if some patterns along those lines *were* ever generated,
we should not need an extra Pat pattern to match it. Instead, the
original MOV64rm instruction pattern ought to match directly, since
it uses an "addr" operand, which is implemented via the SelectAddr
C++ routine; this routine is supposed to accept the full range of
input DAGs that may be implemented by a single mov instruction,
including those cases involving ISD::TargetGlobalTLSAddress (and
actually does so e.g. in the initial-exec case as above).
To avoid build breaks (due to the above-mentioned error) after the
TableGen patch is checked in, I'm removing this Pat here.
llvm-svn: 177426
- Add list of physical registers clobbered in pseudo atomic insts
Physical registers are clobbered when pseudo atomic instructions are
expanded. Add them in clobber list to prevent DAG scheduler to
mis-schedule them after these insns are declared side-effect free.
- Add test case from Michael Kuperstein <michael.m.kuperstein@intel.com>
llvm-svn: 173200
- Besides used in SjLj exception handling, __builtin_setjmp/__longjmp is also
used as a light-weight replacement of setjmp/longjmp which are used to
implementation continuation, user-level threading, and etc. The support added
in this patch ONLY addresses this usage and is NOT intended to support SjLj
exception handling as zero-cost DWARF exception handling is used by default
in X86.
llvm-svn: 165989
- Instead of embedding 'lock' into each mnemonic of atomic
instructions except 'xchg', we teach X86 assembly printer to output 'lock'
prefix similar to or consistent with code emitter.
llvm-svn: 164659
- Rewrite/merge pseudo-atomic instruction emitters to address the
following issue:
* Reduce one unnecessary load in spin-loop
previously the spin-loop looks like
thisMBB:
newMBB:
ld t1 = [bitinstr.addr]
op t2 = t1, [bitinstr.val]
not t3 = t2 (if Invert)
mov EAX = t1
lcs dest = [bitinstr.addr], t3 [EAX is implicit]
bz newMBB
fallthrough -->nextMBB
the 'ld' at the beginning of newMBB should be lift out of the loop
as lcs (or CMPXCHG on x86) will load the current memory value into
EAX. This loop is refined as:
thisMBB:
EAX = LOAD [MI.addr]
mainMBB:
t1 = OP [MI.val], EAX
LCMPXCHG [MI.addr], t1, [EAX is implicitly used & defined]
JNE mainMBB
sinkMBB:
* Remove immopc as, so far, all pseudo-atomic instructions has
all-register form only, there is no immedidate operand.
* Remove unnecessary attributes/modifiers in pseudo-atomic instruction
td
* Fix issues in PR13458
- Add comprehensive tests on atomic ops on various data types.
NOTE: Some of them are turned off due to missing functionality.
- Revise tests due to the new spin-loop generated.
llvm-svn: 164281
Add a PatFrag to match X86tcret using 6 fixed registers or less. This
avoids folding loads into TCRETURNmi64 using 7 or more volatile
registers.
<rdar://problem/12282281>
llvm-svn: 163819