These intrinsics are special because they directly take a memory operand (AVX2
adds the register counterparts). Typically, other non-memop intrinsics take
registers and then it's left to isel to fold memory operands.
In order to LICM intrinsics directly reading memory, we require that no stores
are in the loop (LICM) or that the folded load accesses constant memory
(MachineLICM). When neither is the case we fail to hoist a loop-invariant
broadcast.
We can work around this limitation if we expose the load as a regular load and
then just implement the broadcast using the vector initializer syntax. This
exposes the load to LICM and other optimizations.
At the IR level this is translated into a series of insertelements. The
sequence is already recognized as a broadcast so there is no impact on the
quality of codegen.
_mm256_broadcast_pd and _mm256_broadcast_ps are not updated by this patch
because right now we lack the DAG-combiner smartness to recover the broadcast
instructions. This will be tackled in a follow-on.
There will be completing changes on the LLVM side to remove the LLVM
intrinsics and to auto-upgrade bitcode files.
Fixes <rdar://problem/16494520>
llvm-svn: 209846
Summary:
Most of the clang header patch by Simon Pilgrim @ SCEE.
Also fixed (or added) clang tests for these intrinsics.
LLVM tests to make sure we get the blend instruction out of these
shufflevectors are at http://reviews.llvm.org/D3600
Reviewers: eli.friedman, craig.topper, rafael
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D3601
llvm-svn: 208664
that these headers should not be included more than once, they are in fact
included twice when building our builtins module (in order for it to generate
submodules for them), and without this, any modular build enabling AVX and
including any builtin header fails.
Testing this is tricky because including any of these headers in a modular
build is liable to fail, due to unrelated builtin headers in the same module
including headers which might not be available on the system running the tests.
Suggestion on that front are welcome (but we're getting close to being able to
run a buildbot that has modules enabled for all tests, which would nicely solve
the testing problem).
llvm-svn: 186275
Microsoft's Source Annotation Language (SAL) defines a bunch of keywords
for annotating the inputs and outputs of functions. Empty definitions
for the keywords are provided by <stdlib.h> -> <crtdefs.h> -> <sal.h>.
This makes it basically impossible to include MSVC's stdlib.h and
Clang's *mmintrin.h headers at the same time if they have variables
named __in. As a workaround, I've renamed those variables.
This fixes the Modules/compiler_builtins.m test which was XFAILed,
presumably due to this conflict.
llvm-svn: 179860
Several of the intrinsic headers were using plain non-reserved identifiers.
C++11 17.6.4.3.2 [global.names] p1 reservers names containing a double
begining with an underscore followed by an uppercase letter for any use.
I think I got them all, but open to being corrected. For the most part I
didn't bother updating function-like macro parameter names because I don't
believe they're subject to any such collission - though some function-like
macros already follow this convention (I didn't update them in part because
the churn was more significant as several function-like macros use the double
underscore prefixed version of the same name as a parameter in their
implementation)
llvm-svn: 172666
From the Intel Optimization Reference Manual, Section 11.6.2. When data cannot
be aligned or alignment is not known, 16-byte memory accesses may provide better
performance.
rdar://11076953
llvm-svn: 153091