We now only add +64bit to the CPU string for "generic" CPU. All other CPU names are assumed to have the feature flag already set if they support 64-bit. I've remove the implies from CMPXCHG8 so that Feature64Bit only comes in via CPUs or user passing -mattr=+64bit.
I've changed the assert to a report_fatal_error so it's not lost in Release builds.
The test updates are to fix things that tripped the new error.
Differential Revision: https://reviews.llvm.org/D51231
llvm-svn: 341022
Summary:
Previously most CPUs inherited cmov support through Feature64Bit(or FeatureCMPXCHG16HB implying Feature64Bit) or FeatureSSE1.
This has the surprising side effect that -mattr=-cmov causes an assert to fire in 64-bit mode because it clears the Feature64Bit. Or in 32-bit mode, -mattr=-cmov disables any sse/avx features which seems surprising.
This patch removes the implication and instead updates hasCMOV in X86Subtarget to check SSE1 or is64Bit in addition to the regular cmov flag. This should keep most things working the way they did before. I don't believe there is a way to specific "-cmov" directly from clang so this should only effect our lower level tools.
This does stop -mattr=cx16(cmpxchg16b) from implying cmov is enabled via the 64bit flag as you can see from one of the changed tests. But that was a 32-bit test so I don't know why it enabled cx16 anyway.
For the other test I had to add -sse to override the new sse check in hasCMOV.
Reviewers: RKSimon, DavidKreitzer, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits, jfb
Differential Revision: https://reviews.llvm.org/D51228
llvm-svn: 340707
Summary: This matches gcc and one cpuid dump I found online. Given that these are considered 7th generation x86 CPU it seems likely they support cmov since cmov was added by Intel in their 6th generation.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51264
llvm-svn: 340706
subtarget features for indirect calls and indirect branches.
This is in preparation for enabling *only* the call retpolines when
using speculative load hardening.
I've continued to use subtarget features for now as they continue to
seem the best fit given the lack of other retpoline like constructs so
far.
The LLVM side is pretty simple. I'd like to eventually get rid of the
old feature, but not sure what backwards compatibility issues that will
cause.
This does remove the "implies" from requesting an external thunk. This
always seemed somewhat questionable and is now clearly not desirable --
you specify a thunk the same way no matter which set of things are
getting retpolines.
I really want to keep this nicely isolated from end users and just an
LLVM implementation detail, so I've moved the `-mretpoline` flag in
Clang to no longer rely on a specific subtarget feature by that name and
instead to be directly handled. In some ways this is simpler, but in
order to preserve existing behavior I've had to add some fallback code
so that users who relied on merely passing -mretpoline-external-thunk
continue to get the same behavior. We should eventually remove this
I suspect (we have never tested that it works!) but I've not done that
in this patch.
Differential Revision: https://reviews.llvm.org/D51150
llvm-svn: 340515
This patch fixes the latency/throughput of LEA instructions in the BtVer2
scheduling model.
On Jaguar, A 3-operands LEA has a latency of 2cy, and a reciprocal throughput of
1. That is because it uses one cycle of SAGU followed by 1cy of ALU1. An LEA
with a "Scale" operand is also slow, and it has the same latency profile as the
3-operands LEA. An LEA16r has a latency of 3cy, and a throughput of 0.5 (i.e.
RThrouhgput of 2.0).
This patch adds a new TIIPredicate named IsThreeOperandsLEAFn to X86Schedule.td.
The tablegen backend (for instruction-info) expands that definition into this
(file X86GenInstrInfo.inc):
```
static bool isThreeOperandsLEA(const MachineInstr &MI) {
return (
(
MI.getOpcode() == X86::LEA32r
|| MI.getOpcode() == X86::LEA64r
|| MI.getOpcode() == X86::LEA64_32r
|| MI.getOpcode() == X86::LEA16r
)
&& MI.getOperand(1).isReg()
&& MI.getOperand(1).getReg() != 0
&& MI.getOperand(3).isReg()
&& MI.getOperand(3).getReg() != 0
&& (
(
MI.getOperand(4).isImm()
&& MI.getOperand(4).getImm() != 0
)
|| (MI.getOperand(4).isGlobal())
)
);
}
```
A similar method is generated in the X86_MC namespace, and included into
X86MCTargetDesc.cpp (the declaration lives in X86MCTargetDesc.h).
Back to the BtVer2 scheduling model:
A new scheduling predicate named JSlowLEAPredicate now checks if either the
instruction is a three-operands LEA, or it is an LEA with a Scale value
different than 1.
A variant scheduling class uses that new predicate to correctly select the
appropriate latency profile.
Differential Revision: https://reviews.llvm.org/D49436
llvm-svn: 337469
Re-add the feature flag for invpcid, which was removed in r294561.
Add an intrinsic, which always uses a 32 bit integer as first argument,
while the instruction actually uses a 64 bit register in 64 bit mode
for the INVPCID_TYPE argument.
Reviewers: craig.topper
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D47141
llvm-svn: 333255
This patch aims to match the changes introduced in gcc by
https://gcc.gnu.org/ml/gcc-cvs/2018-04/msg00534.html. The
IBT feature definition is removed, with the IBT instructions
being freely available on all X86 targets. The shadow stack
instructions are also being made freely available, and the
use of all these CET instructions is controlled by the module
flags derived from the -fcf-protection clang option. The hasSHSTK
option remains since clang uses it to determine availability of
shadow stack instruction intrinsics, but it is no longer directly used.
Comes with a clang patch (D46881).
Patch by mike.dvoretsky
Differential Revision: https://reviews.llvm.org/D46882
llvm-svn: 332705
Three new instructions:
umonitor - Sets up a linear address range to be
monitored by hardware and activates the monitor.
The address range should be a writeback memory
caching type.
umwait - A hint that allows the processor to
stop instruction execution and enter an
implementation-dependent optimized state
until occurrence of a class of events.
tpause - Directs the processor to enter an
implementation-dependent optimized state
until the TSC reaches the value in EDX:EAX.
Also modifying the description of the mfence
instruction, as the rep prefix (0xF3) was allowed
before, which would conflict with umonitor during
disassembly.
Before:
$ echo 0xf3,0x0f,0xae,0xf0 | llvm-mc -disassemble
.text
mfence
After:
$ echo 0xf3,0x0f,0xae,0xf0 | llvm-mc -disassemble
.text
umonitor %rax
Reviewers: craig.topper, zvi
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D45253
llvm-svn: 330462
Silvermont and Goldmont have the same issue on popcnt as Sandy Bridge, Haswell, Broadwell, and Skylake. Believe it is fixed in Goldmont Plus.
llvm-svn: 330358
Using Goldmont's cost tables for these two upcoming
atom archs.
Reviewers: craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45612
llvm-svn: 330109
Hint to hardware to move the cache line containing the
address to a more distant level of the cache without
writing back to memory.
Reviewers: craig.topper, zvi
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D45256
llvm-svn: 329992
Similar to the wbinvd instruction, except this
one does not invalidate caches. Ring 0 only.
The encoding matches a wbinvd instruction with
an F3 prefix.
Reviewers: craig.topper, zvi, ashlykov
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D43816
llvm-svn: 329847
Summary:
Subtargets can define the libpfm counter names that can be used to
measure cycles and uops issued on ProcResUnits.
This allows making llvm-exegesis available on more targets.
Fixes PR36984.
Reviewers: gchatelet, RKSimon, andreadb, craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45360
llvm-svn: 329675
Summary:
Add a target option AllowRegisterRenaming that is used to opt in to
post-register-allocation renaming of registers. This is set to 0 by
default, which causes the hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq
fields of all opcodes to be set to 1, causing
MachineOperand::isRenamable to always return false.
Set the AllowRegisterRenaming flag to 1 for all in-tree targets that
have lit tests that were effected by enabling COPY forwarding in
MachineCopyPropagation (AArch64, AMDGPU, ARM, Hexagon, Mips, PowerPC,
RISCV, Sparc, SystemZ and X86).
Add some more comments describing the semantics of the
MachineOperand::isRenamable function and how it is set and maintained.
Change isRenamable to check the operand's opcode
hasExtraSrcRegAllocReq/hasExtraDstRegAllocReq bit directly instead of
relying on it being consistently reflected in the IsRenamable bit
setting.
Clear the IsRenamable bit when changing an operand's register value.
Remove target code that was clearing the IsRenamable bit when changing
registers/opcodes now that this is done conservatively by default.
Change setting of hasExtraSrcRegAllocReq in AMDGPU target to be done in
one place covering all opcodes that have constant pipe read limit
restrictions.
Reviewers: qcolombet, MatzeB
Subscribers: aemerson, arsenm, jyknight, mcrosier, sdardis, nhaehnle, javed.absar, tpr, arichardson, kristof.beyls, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, niosHD, escha, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D43042
llvm-svn: 325931
Cannon Lake does not support CLWB, therefore it
does not include all features listed under SKX anymore.
Instead, enumerate all SKX features with the exception of CLWB.
Patch by Gabor Buella
Differential Revision: https://reviews.llvm.org/D43380
llvm-svn: 325654
We currently emit up to 15-byte NOPs on all targets (apart from Silvermont), which stalls performance on some targets with decoders that struggle with 2 or 3 more '66' prefixes.
This patch flags recent AMD targets (btver1/znver1) to still emit 15-byte NOPs and bdver* targets to emit 11-byte NOPs. All other targets now emit 10-byte NOPs apart from SilverMont CPUs which still emit 7-byte NOPS.
Differential Revision: https://reviews.llvm.org/D42616
llvm-svn: 323693
Summary:
First, we need to explain the core of the vulnerability. Note that this
is a very incomplete description, please see the Project Zero blog post
for details:
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
The basis for branch target injection is to direct speculative execution
of the processor to some "gadget" of executable code by poisoning the
prediction of indirect branches with the address of that gadget. The
gadget in turn contains an operation that provides a side channel for
reading data. Most commonly, this will look like a load of secret data
followed by a branch on the loaded value and then a load of some
predictable cache line. The attacker then uses timing of the processors
cache to determine which direction the branch took *in the speculative
execution*, and in turn what one bit of the loaded value was. Due to the
nature of these timing side channels and the branch predictor on Intel
processors, this allows an attacker to leak data only accessible to
a privileged domain (like the kernel) back into an unprivileged domain.
The goal is simple: avoid generating code which contains an indirect
branch that could have its prediction poisoned by an attacker. In many
cases, the compiler can simply use directed conditional branches and
a small search tree. LLVM already has support for lowering switches in
this way and the first step of this patch is to disable jump-table
lowering of switches and introduce a pass to rewrite explicit indirectbr
sequences into a switch over integers.
However, there is no fully general alternative to indirect calls. We
introduce a new construct we call a "retpoline" to implement indirect
calls in a non-speculatable way. It can be thought of loosely as
a trampoline for indirect calls which uses the RET instruction on x86.
Further, we arrange for a specific call->ret sequence which ensures the
processor predicts the return to go to a controlled, known location. The
retpoline then "smashes" the return address pushed onto the stack by the
call with the desired target of the original indirect call. The result
is a predicted return to the next instruction after a call (which can be
used to trap speculative execution within an infinite loop) and an
actual indirect branch to an arbitrary address.
On 64-bit x86 ABIs, this is especially easily done in the compiler by
using a guaranteed scratch register to pass the target into this device.
For 32-bit ABIs there isn't a guaranteed scratch register and so several
different retpoline variants are introduced to use a scratch register if
one is available in the calling convention and to otherwise use direct
stack push/pop sequences to pass the target address.
This "retpoline" mitigation is fully described in the following blog
post: https://support.google.com/faqs/answer/7625886
We also support a target feature that disables emission of the retpoline
thunk by the compiler to allow for custom thunks if users want them.
These are particularly useful in environments like kernels that
routinely do hot-patching on boot and want to hot-patch their thunk to
different code sequences. They can write this custom thunk and use
`-mretpoline-external-thunk` *in addition* to `-mretpoline`. In this
case, on x86-64 thu thunk names must be:
```
__llvm_external_retpoline_r11
```
or on 32-bit:
```
__llvm_external_retpoline_eax
__llvm_external_retpoline_ecx
__llvm_external_retpoline_edx
__llvm_external_retpoline_push
```
And the target of the retpoline is passed in the named register, or in
the case of the `push` suffix on the top of the stack via a `pushl`
instruction.
There is one other important source of indirect branches in x86 ELF
binaries: the PLT. These patches also include support for LLD to
generate PLT entries that perform a retpoline-style indirection.
The only other indirect branches remaining that we are aware of are from
precompiled runtimes (such as crt0.o and similar). The ones we have
found are not really attackable, and so we have not focused on them
here, but eventually these runtimes should also be replicated for
retpoline-ed configurations for completeness.
For kernels or other freestanding or fully static executables, the
compiler switch `-mretpoline` is sufficient to fully mitigate this
particular attack. For dynamic executables, you must compile *all*
libraries with `-mretpoline` and additionally link the dynamic
executable and all shared libraries with LLD and pass `-z retpolineplt`
(or use similar functionality from some other linker). We strongly
recommend also using `-z now` as non-lazy binding allows the
retpoline-mitigated PLT to be substantially smaller.
When manually apply similar transformations to `-mretpoline` to the
Linux kernel we observed very small performance hits to applications
running typical workloads, and relatively minor hits (approximately 2%)
even for extremely syscall-heavy applications. This is largely due to
the small number of indirect branches that occur in performance
sensitive paths of the kernel.
When using these patches on statically linked applications, especially
C++ applications, you should expect to see a much more dramatic
performance hit. For microbenchmarks that are switch, indirect-, or
virtual-call heavy we have seen overheads ranging from 10% to 50%.
However, real-world workloads exhibit substantially lower performance
impact. Notably, techniques such as PGO and ThinLTO dramatically reduce
the impact of hot indirect calls (by speculatively promoting them to
direct calls) and allow optimized search trees to be used to lower
switches. If you need to deploy these techniques in C++ applications, we
*strongly* recommend that you ensure all hot call targets are statically
linked (avoiding PLT indirection) and use both PGO and ThinLTO. Well
tuned servers using all of these techniques saw 5% - 10% overhead from
the use of retpoline.
We will add detailed documentation covering these components in
subsequent patches, but wanted to make the core functionality available
as soon as possible. Happy for more code review, but we'd really like to
get these patches landed and backported ASAP for obvious reasons. We're
planning to backport this to both 6.0 and 5.0 release streams and get
a 5.0 release with just this cherry picked ASAP for distros and vendors.
This patch is the work of a number of people over the past month: Eric, Reid,
Rui, and myself. I'm mailing it out as a single commit due to the time
sensitive nature of landing this and the need to backport it. Huge thanks to
everyone who helped out here, and everyone at Intel who helped out in
discussions about how to craft this. Also, credit goes to Paul Turner (at
Google, but not an LLVM contributor) for much of the underlying retpoline
design.
Reviewers: echristo, rnk, ruiu, craig.topper, DavidKreitzer
Subscribers: sanjoy, emaste, mcrosier, mgorny, mehdi_amini, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D41723
llvm-svn: 323155
This will cause the vectorizers to do some limiting of the vector widths they create. This is not a strict limit. There are reasons I know of that the loop vectorizer will generate larger vectors for.
I've written this in such a way that the interface will only return a properly supported width(0/128/256/512) even if the attribute says something funny like 384 or 10.
This has been split from D41895 with the remainder in a follow up commit.
llvm-svn: 323015
This adds a new instrinsic to support the rdpid instruction. The implementation is a bit weird because the intrinsic is defined as always returning 32-bits, but the assembler support thinks the instruction produces a 64-bit register in 64-bit mode. But really it zeros the upper 32 bits. So I had to add separate patterns where 64-bit mode uses an extract_subreg.
Differential Revision: https://reviews.llvm.org/D42205
llvm-svn: 322910
After D41349, we can no get a MCSubtargetInfo into the MCAsmBackend constructor. This allows us to get NOPL from a subtarget feature rather than a CPU name blacklist.
Differential Revision: https://reviews.llvm.org/D41721
llvm-svn: 322227
Previously prefetch was only considered legal if sse was enabled, but it should be supported with 3dnow as well.
The prfchw flag now imply at least some form of prefetch without the write hint is available, either the sse or 3dnow version. This is true even if 3dnow and sse are explicitly disabled.
Similarly prefetchwt1 feature implies availability of prefetchw and the the prefetcht0/1/2/nta instructions. This way we can support _MM_HINT_ET0 using prefetchw and _MM_HINT_ET1 with prefetchwt1. And its assumed that if we have levels for the write hint we would have levels for the non-write hint, thus why we enable the sse prefetch instructions.
I believe this behavior is consistent with gcc. I've updated the prefetch.ll to test all of these combinations.
llvm-svn: 321335
As mentioned in D38318 and D40865, modern Intel processors prefer to combine multiple shuffles to a variable shuffle mask (PSHUFB/VPERMPS etc.) instead of having multiple stage 'fixed' shuffles which put more pressure on Port 5 (at the expense of extra shuffle mask loads).
This patch provides a FeatureFastVariableShuffle target flag for Haswell+ CPUs that prefers combining 2 or more fixed shuffles to a single variable shuffle (default is 3 shuffles).
The long term aim is to drive more of this from schedule data (probably via the MC) but we're not close to being ready for that yet.
Differential Revision: https://reviews.llvm.org/D41323
llvm-svn: 321074
This separates the CPU specific scheduler model includes to occur after the instructions. Moves the instruction includes between the basic scheduler information and the CPU specific scheduler models.
llvm-svn: 320313
Shadow stack solution introduces a new stack for return addresses only.
The HW has a Shadow Stack Pointer (SSP) that points to the next return address.
If we return to a different address, an exception is triggered.
The shadow stack is managed using a series of intrinsics that are introduced in this patch as well as the new register (SSP).
The intrinsics are mapped to new instruction set that implements CET mechanism.
The patch also includes initial infrastructure support for IBT.
For more information, please see the following:
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
Differential Revision: https://reviews.llvm.org/D40223
Change-Id: I4daa1f27e88176be79a4ac3b4cd26a459e88fed4
llvm-svn: 318996
Summary:
This adds a new fast gather feature bit to cover all CPUs that support fast gather that we can use independent of whether the AVX512 feature is enabled. I'm only using this new bit to qualify AVX2 codegen. AVX512 is still implicitly assuming fast gather to keep tests working and to match the scatter behavior.
Test command lines have been added for these two cases.
Reviewers: magabari, delena, RKSimon, zvi
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D40282
llvm-svn: 318983
This is based on table 1-1 of the October 2017 revision of Intel® Architecture Instruction Set Extensions and Future Features Programming Reference
llvm-svn: 318799
The EVEX to VEX pass is already assuming this is true under AVX512VL. We had special patterns to use zmm instructions if VLX and F16C weren't available.
Instead just make AVX512 imply F16C to make the EVEX to VEX behavior explicitly legal and remove the extra patterns.
All known CPUs with AVX512 have F16C so this should safe for now.
llvm-svn: 317521
Previously our VEX patterns were checking Subtarget.hasFMA() which checked FMA || AVX512. So we were behaving as if AVX512 implied it anyway. Which means we'd allow VEX encoded 128/256 FMA when AVX512F was enabled but AVX512VL is off. Regardless of the FMA flag.
EVEX to VEX also transforms scalar EVEX FMA instructions to their VEX versions even without the FMA flag. Similarly for 128/256 under AVX512VL.
So this makes AVX512 imply FeatureFMA to make our current behavior explicit.
All known CPUs that support AVX512 have VEX FMA instructions.
llvm-svn: 317520