Recommitting after fixing AsmParser Initialization.
Allow errors to be deferred and emitted as part of clean up to simplify
and shorten Assembly parser code. This will allow error messages to be
emitted in helper functions and be modified by the caller which has
better context.
As part of this many minor cleanups to the Parser:
* Unify parser cleanup on error
* Add Workaround for incorrect return values in ParseDirective instances
* Tighten checks on error-signifying return values for parser functions
and fix in-tree TargetParsers to be more consistent with the changes.
* Fix AArch64 test cases checking for spurious error messages that are
now fixed.
These changes should be backwards compatible with current Target Parsers
so long as the error status are correctly returned in appropriate
functions.
Reviewers: rnk, majnemer
Subscribers: aemerson, jyknight, llvm-commits
Differential Revision: https://reviews.llvm.org/D24047
llvm-svn: 281336
descriptions now tag add instructions, and the Hexagon backend is using this to
identify loop induction statements.
Patch by Sam Parker and Sjoerd Meijer.
Differential Revision: https://reviews.llvm.org/D23601
llvm-svn: 281304
Allow errors to be deferred and emitted as part of clean up to simplify
and shorten Assembly parser code. This will allow error messages to be
emitted in helper functions and be modified by the caller which has
better context.
As part of this many minor cleanups to the Parser:
* Unify parser cleanup on error
* Add Workaround for incorrect return values in ParseDirective instances
* Tighten checks on error-signifying return values for parser functions
and fix in-tree TargetParsers to be more consistent with the changes.
* Fix AArch64 test cases checking for spurious error messages that are
now fixed.
These changes should be backwards compatible with current Target Parsers
so long as the error status are correctly returned in appropriate
functions.
Reviewers: rnk, majnemer
Subscribers: aemerson, jyknight, llvm-commits
Differential Revision: https://reviews.llvm.org/D24047
llvm-svn: 281249
Now that MachineBasicBlock::reverse_instr_iterator knows when it's at
the end (since r281168 and r281170), implement
MachineBasicBlock::reverse_iterator directly on top of an
ilist::reverse_iterator by adding an IsReverse template parameter to
MachineInstrBundleIterator. This replaces another hard-to-reason-about
use of std::reverse_iterator on list iterators, matching the changes for
ilist::reverse_iterator from r280032 (see the "out of scope" section at
the end of that commit message). MachineBasicBlock::reverse_iterator
now has a handle to the current node and has obvious invalidation
semantics.
r280032 has a more detailed explanation of how list-style reverse
iterators (invalidated when the pointed-at node is deleted) are
different from vector-style reverse iterators like std::reverse_iterator
(invalidated on every operation). A great motivating example is this
commit's changes to lib/CodeGen/DeadMachineInstructionElim.cpp.
Note: If your out-of-tree backend deletes instructions while iterating
on a MachineBasicBlock::reverse_iterator or converts between
MachineBasicBlock::iterator and MachineBasicBlock::reverse_iterator,
you'll need to update your code in similar ways to r280032. The
following table might help:
[Old] ==> [New]
delete &*RI, RE = end() delete &*RI++
RI->erase(), RE = end() RI++->erase()
reverse_iterator(I) std::prev(I).getReverse()
reverse_iterator(I) ++I.getReverse()
--reverse_iterator(I) I.getReverse()
reverse_iterator(std::next(I)) I.getReverse()
RI.base() std::prev(RI).getReverse()
RI.base() ++RI.getReverse()
--RI.base() RI.getReverse()
std::next(RI).base() RI.getReverse()
(For more details, have a look at r280032.)
llvm-svn: 281172
Shadow uses need to be analyzed together, since each individual shadow
will only have a partial reaching def. All shadows together may cover
a given register ref, while each individual shadow may not.
llvm-svn: 280855
This reverts commit r280268, it causes all MSVC 2013 to ICE. This
appears to have been fixed in a later MSVC 2013 update, because I cannot
reproduce it locally. That said, all upstream LLVM bots are broken right
now, so I am reverting.
Also reverts dependent change r280275, "[Hexagon] Deal with undefs when
extending live intervals".
llvm-svn: 280301
Rename AllVRegsAllocated to NoVRegs. This avoids the connotation of
running after register and simply describes that no vregs are used in
a machine function. With that we can simply compute the property and do
not need to dump/parse it in .mir files.
Differential Revision: http://reviews.llvm.org/D23850
llvm-svn: 279698
The register allocator can split a live interval of a register into a set
of smaller intervals. After the allocation of registers is complete, the
rewriter will modify the IR to replace virtual registers with the corres-
ponding physical registers. At this stage, if a register corresponding
to a subregister of a virtual register is used, the rewriter will check
if that subregister is undefined, and if so, it will add the <undef> flag
to the machine operand. The function verifying liveness of the subregis-
ter would assume that it is undefined, unless any of the subranges of the
live interval proves otherwise.
The problem is that the live intervals created during splitting do not
have any subranges, even if the original parent interval did. This could
result in the <undef> flag placed on a register that is actually defined.
Differential Revision: http://reviews.llvm.org/D21189
llvm-svn: 279625
Re-apply this patch, hopefully I will get away without any warnings
in the constructor now.
This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.
This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.
Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.
Differential Revision: http://reviews.llvm.org/D23736
llvm-svn: 279602
Re-apply this commit with the deletion of a MachineFunction delegated to
a separate pass to avoid use after free when doing this directly in
AsmPrinter.
This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.
This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.
Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.
Differential Revision: http://reviews.llvm.org/D23736
llvm-svn: 279564
This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.
This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.
Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.
Differential Revision: http://reviews.llvm.org/D23736
llvm-svn: 279502
They can be deleted or replicated, so the cache may become outdated.
They only need to be visited once during frame lowering, so just scan
the function instead.
llvm-svn: 279297
Improved handling of fma, floating point min/max, additional load/store
instructions for floating point types.
Patch by Jyotsna Verma.
llvm-svn: 279239
The names of the tablegen defs now match the names of the ISD nodes.
This makes the world a slightly saner place, as previously "fround" matched
ISD::FP_ROUND and not ISD::FROUND.
Differential Revision: https://reviews.llvm.org/D23597
llvm-svn: 279129
This is a mechanical change of comments in switches like fallthrough,
fall-through, or fall-thru to use the LLVM_FALLTHROUGH macro instead.
llvm-svn: 278902
This adds two new utility functions findLoopControlBlock and findLoopPreheader
to MachineLoop and MachineLoopInfo. These functions are refactored and taken
from the Hexagon target as they are target independent; thus this is intendend to
be a non-functional change.
Differential Revision: https://reviews.llvm.org/D22959
llvm-svn: 278661
LowerTargetConstantPool is not properly setting the TargetFlag to indicate
desired relocation. Coding error, the offset parameter was omitted, so the
TargetFlag was used as the offset, and the TargetFlag defaulted to zero.
This only affects -fpic compilation, and only those items created in a
Constant Pool, for example a vector of constants. Halide ran into this issue.
llvm-svn: 278614
Remove all ilist_iterator to pointer casts. There were two reasons for
casts:
- Checking for an uninitialized (i.e., null) iterator. I added
MachineInstrBundleIterator::isValid() to check for that case.
- Comparing an iterator against the underlying pointer value while
avoiding converting the pointer value to an iterator. This is
occasionally necessary in MachineInstrBundleIterator, since there is
an assertion in the constructors that the underlying MachineInstr is
not bundled (but we don't care about that if we're just checking for
pointer equality).
To support the latter case, I rewrote the == and != operators for
ilist_iterator and MachineInstrBundleIterator.
- The implicit constructors now use enable_if to exclude
const-iterator => non-const-iterator conversions from overload
resolution (previously it was a compiler error on instantiation, now
it's SFINAE).
- The == and != operators are now global (friends), and are not
templated.
- MachineInstrBundleIterator has overloads to compare against both
const_pointer and const_reference. This avoids the implicit
conversions to MachineInstrBundleIterator that assert, instead just
checking the address (and I added unit tests to confirm this).
Notably, the only remaining uses of ilist_iterator::getNodePtrUnchecked
are in ilist.h, and no code outside of ilist*.h directly relies on this
UB end-iterator-to-pointer conversion anymore. It's still needed for
ilist_*sentinel_traits, but I'll clean that up soon.
llvm-svn: 278478
From the point of view of register assignment, byval parameters are
ignored: a byval parameter is not going to be assigned to a register,
and it will not affect the assignments of subsequent parameters.
When matching registers with parameters in the bit tracker, make sure
to skip byval parameters before advancing the registers.
llvm-svn: 278375
Check for end() before skipping through debug values. This avoids
dereferencing end() when the instruction is the final one in the basic
block. (It still assumes that a debug value will not be the final
instruction in the basic block. No tests seemed to violate that.)
Many Hexagon tests trigger this, but they happen to magically pass right
now. I found this because WIP patches for PR26753 convert them into
crashes.
llvm-svn: 278355
Floating point instructions use general purpose registers, so the few
instructions that can put floating point immediates into registers are,
in fact, integer instruction. Use them explicitly instead of having
pseudo-instructions specifically for dealing with floating point values.
Simplify the constant loading instructions (from sdata) to have only two:
one for 32-bit values and one for 64-bit values: CONST32 and CONST64.
llvm-svn: 278244
When the same base address is used to load two different data types, LSR
would assume a memory type of "void". This type is not sized and has no
alignment information. Checking for it causes a crash.
llvm-svn: 277601
Identify patterns where the address is aligned to an 8-byte boundary,
but both the base address and the constant offset are both proper
multiples of 4. In such cases, extract Base+4 into a separate instruc-
tion, and use S2_storerd_io, instead of using S4_storerd_rr.
llvm-svn: 277497
Scavenging slots were only reserved when pseudo-instruction expansion in
frame lowering created new virtual registers. It is possible to still
need a scavenging slot even if no virtual registers were created, in cases
where the stack is large enough to overflow instruction offsets.
llvm-svn: 277355
The DAG combiner tries to merge stores to adjacent vector wide memory
locations by creating stores which are integral multiples of the vector
width. Discourage this by informing it that this is slow. This should
not affect legalization passes, because all of them ignore the "Fast"
argument.
Patch by Pranav Bhandarkar.
llvm-svn: 277178
Software pipelining is an optimization for improving ILP by
overlapping loop iterations. Swing Modulo Scheduling (SMS) is
an implementation of software pipelining that attempts to
reduce register pressure and generate efficient pipelines with
a low compile-time cost.
This implementaion of SMS is a target-independent back-end pass.
When enabled, the pass should run just prior to the register
allocation pass, while the machine IR is in SSA form. If the pass
is successful, then the original loop is replaced by the optimized
loop. The optimized loop contains one or more prolog blocks, the
pipelined kernel, and one or more epilog blocks.
This pass is enabled for Hexagon only. To enable for other targets,
a couple of target specific hooks must be implemented, and the
pass needs to be called from the target's TargetMachine
implementation.
Differential Review: http://reviews.llvm.org/D16829
llvm-svn: 277169
If the mask of a vector shuffle has alternating odd or even numbers
starting with 1 or 0 respectively up to the largest possible index
for the given type in the given HVX mode (single of double) we can
generate vpacko or vpacke instruction respectively.
E.g.
%42 = shufflevector <32 x i16> %37, <32 x i16> %41,
<32 x i32> <i32 1, i32 3, ..., i32 63>
is %42.h = vpacko(%41.w, %37.w)
Patch by Pranav Bhandarkar.
llvm-svn: 277168
Rebalances address calculation trees and applies Hexagon-specific
optimizations to the trees to improve instruction selection.
Patch by Tobias Edler von Koch.
llvm-svn: 277151
The post register allocator scheduler can generate poor schedules
because the scoreboard hazard recognizer is unable to identify
hazards for Hexagon precisely. Instead, Hexagon should use a DFA
based hazard recognizer.
Patch by Brendon Cahoon.
llvm-svn: 277143
Normally, CFI instructions should be inserted after allocframe, but
if allocframe is in the same packet with a call, the CFI instructions
should be inserted before that packet.
llvm-svn: 277020
Before adding a new preheader block, check if there is a candidate block
where the loop setup could be placed speculatively. This will be off by
default.
llvm-svn: 276919
The callee-saved registers that are saved in a function are not pristine,
and so they can be defined and used. In case of shrink-wrapping though,
there are blocks that are outside of the save/restore range, and in those
blocks the saved registers must be treated as pristine. To avoid any uses
of these registers, add them as live-in in all those blocks.
This was already done for blocks reaching function exits after restore,
add code that does the same for blocks reached from the function entry
before save.
llvm-svn: 276886
Consider this case:
vreg1 = A2_zxth vreg0 (1)
...
vreg2 = A2_zxth vreg1 (2)
Redundant instruction elimination could delete the instruction (1)
because the user (2) only cares about the low 16 bits. Then it could
delete (2) because the input is already zero-extended. The problem
is that the properties allowing each individual instruction to be
deleted depend on the existence of the other instruction, so either
one can be deleted, but not both.
The existing check for this situation in RIE was insufficient. The
fix is to update all dependent cells when an instruction is removed
(replaced via COPY) in RIE.
llvm-svn: 276792
When the packetizer wants to put a store to a stack slot in the same
packet with an allocframe, it updates the store offset to reflect the
value of SP before it is updated by allocframe. If the store cannot
be packetized with the allocframe after all, the offset needs to be
updated back to the previous value.
llvm-svn: 276749
Some targets, notably AArch64 for ILP32, have different relocation encodings
based upon the ABI. This is an enabling change, so a future patch can use the
ABIName from MCTargetOptions to chose which relocations to use. Tested using
check-llvm.
The corresponding change to clang is in: http://reviews.llvm.org/D16538
Patch by: Joel Jones
Differential Revision: https://reviews.llvm.org/D16213
llvm-svn: 276654
- FuncNode::findBlock traverses the function every time. Avoid using it,
and keep a cache of block addresses in DataFlowGraph instead.
- The operator[] in the map of definition stacks was very slow. Replace
the map with unordered_map.
llvm-svn: 276429
Schedule a load and its use in the same packet in MISched. Previously,
isResourceAvailable was returning false for dependences in the same
packet, which prevented MISched from packetizing a load and its use in
the same packet for v60.
Patch by Ikhlas Ajbar.
llvm-svn: 275804
The machine scheduler needs to account for available resources
more accurately in order to avoid scheduling an instruction that
forces a new packet to be created.
This occurs in two ways: First, an instruction without an available
resource may have a large priority due to other metrics and be
scheduled when there are other instructions with available resources.
Second, an instruction with a non-zero latency may become available
prematurely. In both these cases, we attempt change the priority
in order to allow a better instruction to be scheduled.
Patch by Brendon Cahoon.
llvm-svn: 275793
An instruction may have multiple predecessors that are candidates
for using .cur. However, only one of them can use .cur in the
packet. When this case occurs, we need to make sure that only
one of the dependences gets a 0 latency value.
Patch by Brendon Cahoon.
llvm-svn: 275790
The Hexagon schedulers need to handle instructions with a latency
of 0 or 2 more accurately. The problem, in v60, is that a dependence
between two instructions with a 2 cycle latency can use a .cur version
of the source to achieve a 0 cycle latency when the use is in the
same packet. Any othe use, must be at least 2 packets later, or a
stall occurs. In other words, the compiler does not want to schedule
the dependent instructions 1 cycle later.
To achieve this, the latency adjustment code allows only a single
dependence to have a zero latency. All other instructions have the
other value, which is typically 2 cycles. We use a heuristic to
determine which instruction gets the 0 latency.
The Hexagon machine scheduler was also changed to increase the cost
associated with 0 latency dependences than can be scheduled in the
same packet.
Patch by Brendon Cahoon.
llvm-svn: 275625
Summary:
Instead, we take a single flags arg (a bitset).
Also add a default 0 alignment, and change the order of arguments so the
alignment comes before the flags.
This greatly simplifies many callsites, and fixes a bug in
AMDGPUISelLowering, wherein the order of the args to getLoad was
inverted. It also greatly simplifies the process of adding another flag
to getLoad.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, jyknight, dsanders, nemanjai, llvm-commits
Differential Revision: http://reviews.llvm.org/D22249
llvm-svn: 275592
Summary:
Previously we took an unsigned.
Hooray for type-safety.
Reviewers: chandlerc
Subscribers: dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D22282
llvm-svn: 275591