Discussed here:
http://lists.llvm.org/pipermail/llvm-dev/2018-January/120320.html
In preparation for adding support for named vregs we are changing the sigil for
physical registers in MIR to '$' from '%'. This will prevent name clashes of
named physical register with named vregs.
llvm-svn: 323922
`llc -march` is problematic because it only switches the target
architecture, but leaves the operating system unchanged. This
occasionally leads to indeterministic tests because the OS from
LLVM_DEFAULT_TARGET_TRIPLE is used.
However we can simply always use `llc -mtriple` instead. This changes
all the tests to do this to avoid people using -march when they copy and
paste parts of tests.
See also the discussion in https://reviews.llvm.org/D35287
llvm-svn: 309774
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
and allow some optimizations to turn conditional branches into unconditional.
This commit adds a simple control-flow optimization which merges two consecutive
basic blocks which are connected by a single edge. This allows the codegen to
operate on larger basic blocks.
rdar://11973998
llvm-svn: 161852
This was done through the aid of a terrible Perl creation. I will not
paste any of the horrors here. Suffice to say, it require multiple
staged rounds of replacements, state carried between, and a few
nested-construct-parsing hacks that I'm not proud of. It happens, by
luck, to be able to deal with all the TCL-quoting patterns in evidence
in the LLVM test suite.
If anyone is maintaining large out-of-tree test trees, feel free to poke
me and I'll send you the steps I used to convert things, as well as
answer any painful questions etc. IRC works best for this type of thing
I find.
Once converted, switch the LLVM lit config to use ShTests the same as
Clang. In addition to being able to delete large amounts of Python code
from 'lit', this will also simplify the entire test suite and some of
lit's architecture.
Finally, the test suite runs 33% faster on Linux now. ;]
For my 16-hardware-thread (2x 4-core xeon e5520): 36s -> 24s
llvm-svn: 159525
when the condition is constant. This optimization shouldn't be
necessary, because codegen shouldn't be able to find dead control
paths that the IR-level optimizer can't find. And it's undesirable,
because it encourages bugpoint to leave "br i1 false" branches
in its output. And it wasn't updating the CFG.
I updated all the tests I could, but some tests are too reduced
and I wasn't able to meaningfully preserve them.
llvm-svn: 106748
mnemonics from their operands instead of single spaces. This makes the
assembly output a little more consistent with various other compilers
(f.e. GCC), and slightly easier to read. Also, update the regression
tests accordingly.
llvm-svn: 40648