This prevents InstCombine from creating mis-sized dbg.values when
replacing a sequence of casts with a simpler cast. For example, in:
(fptrunc (floor (fpext X))) -> (floorf X)
We no longer emit dbg.value(X) (with a 32-bit float operand) to describe
(fpext X) (which is a 64-bit float).
This was diagnosed by the debugify check added in r335682.
llvm-svn: 335696
It's not possible to get the fragment size of some dbg.values. Teach the
mis-sized dbg.value diagnostic to detect this scenario and bail out.
Tested with:
$ find test/Transforms -print -exec opt -debugify-each -instcombine {} \;
llvm-svn: 335695
Report an error in -check-debugify when the size of a dbg.value operand
doesn't match up with the size of the variable it describes.
Eventually this check should be moved into the IR verifier. For the
moment, it's useful to include the check in -check-debugify as a means
of catching regressions and finding existing bugs.
Here are some instances of bugs the new check finds in the -O2 pipeline
(all in InstCombine):
1) A float is used where a double is expected:
ERROR: dbg.value operand has size 32, but its variable has size 64:
call void @llvm.dbg.value(metadata float %expf, metadata !12, metadata
!DIExpression()), !dbg !15
2) An i8 is used where an i32 is expected:
ERROR: dbg.value operand has size 8, but its variable has size 32:
call void @llvm.dbg.value(metadata i8 %t4, metadata !14, metadata
!DIExpression()), !dbg !24
3) A <4 x i32> is used where something twice as large is expected
(perhaps a <4 x i64>, I haven't double-checked):
ERROR: dbg.value operand has size 128, but its variable has size 256:
call void @llvm.dbg.value(metadata <4 x i32> %4, metadata !40, metadata
!DIExpression()), !dbg !95
Differential Revision: https://reviews.llvm.org/D48408
llvm-svn: 335682
Summary:
When recording uses we need to rewrite after cloning a loop we need to
check if the use is not dominated by the original def. The initial
assumption was that the cloned basic block will introduce a new path and
thus the original def will only dominate the use if they are in the same
BB, but as the reproducer from PR37745 shows it's not always the case.
This fixes PR37745.
Reviewers: haicheng, Ka-Ka
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D48111
llvm-svn: 335675
LLJIT is a prefabricated ORC based JIT class that is meant to be the go-to
replacement for MCJIT. Unlike OrcMCJITReplacement (which will continue to be
supported) it is not API or bug-for-bug compatible, but targets the same
use cases: Simple, non-lazy compilation and execution of LLVM IR.
LLLazyJIT extends LLJIT with support for function-at-a-time lazy compilation,
similar to what was provided by LLVM's original (now long deprecated) JIT APIs.
This commit also contains some simple utility classes (CtorDtorRunner2,
LocalCXXRuntimeOverrides2, JITTargetMachineBuilder) to support LLJIT and
LLLazyJIT.
Both of these classes are works in progress. Feedback from JIT clients is very
welcome!
llvm-svn: 335670
Right now, when we use RIP-relative instructions in 32-bit mode, we'll just
assert and crash.
This adds an error message which tells the user that they can't do that in
32-bit mode, so that we don't crash (and also can see the issue outside of
assert builds).
llvm-svn: 335658
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
Not sure why this logic seems to be repeated in 2 different places,
one called by the other.
On AMDGPU addrspace(3) globals start allocating at 0, so these
checks will be incorrect (not that real code actually tries
to compare these addresses)
llvm-svn: 335649
When checking the debug info in a module, don't treat a missing
dbg.value as an error. The dbg.value may simply have been DCE'd, in
which case the debugger has enough information to display the variable
as <optimized out>.
llvm-svn: 335647
I'm not sure why the code here is skipping calls since
TTI does try to do something for general calls, but it
at least should allow intrinsics.
Skip intrinsics that should not be omitted as calls, which
is by far the most common case on AMDGPU.
llvm-svn: 335645
Add the generic processor for Hexagon so that it can be used
with 3rd party programs that create a back-end with the
"generic" CPU. This patch also enables the JIT for Hexagon.
Differential Revision: https://reviews.llvm.org/D48571
llvm-svn: 335641
Similar to other patches in this series:
https://reviews.llvm.org/rL335512https://reviews.llvm.org/rL335527https://reviews.llvm.org/rL335597https://reviews.llvm.org/rL335616
...this is filling a gap in analysis that is exposed by an unrelated select-of-constants transform.
I didn't see a way to unify the sext cases because each div/rem opcode results in a different fold.
Note that in this case, the backend might want to convert the select into math:
Name: sext urem
%e = sext i1 %x to i32
%r = urem i32 %y, %e
=>
%c = icmp eq i32 %y, -1
%z = zext i1 %c to i32
%r = add i32 %z, %y
llvm-svn: 335622
Since D46637 we are better at handling uniform/non-uniform constant Pow2 detection; this patch tweaks the SLP argument handling to support them.
As SLP works with arrays of values I don't think we can easily use the pattern match helpers here.
Differential Revision: https://reviews.llvm.org/D48214
llvm-svn: 335621
Prior to this change, there was no clean way of getting FileCheck to
check that a line is completely empty. The expected way of using
"CHECK: {{^$}}" does not work because the '^' matches the end of the
previous match (this behaviour may be desirable in certain instances).
For the same reason, "CHECK-NEXT: {{^$}}" will fail when the previous
match was at the end of the line, as the pattern will match there.
Using the recommended [[:space:]] to match an explicit new line could
also match a space, and thus is not always desired. Literal '\n'
matches also do not work. A workaround was suggested in the review, but
it is a little clunky.
This change adds a new directive that behaves the same as CHECK-NEXT,
except that it only matches against empty lines (nothing, not even
whitespace, is allowed). As with CHECK-NEXT, it will fail if more than
one newline occurs before the next blank line. Example usage:
; test.txt
foo
bar
; CHECK: foo
; CHECK-EMPTY:
; CHECK-NEXT: bar
Differential Revision: https://reviews.llvm.org/D28896
Reviewed by: probinson
llvm-svn: 335613
It is legal for a PHI node not to have a live value in a predecessor
as long as the end of the predecessor is jointly dominated by an undef
value.
llvm-svn: 335607
Summary:
If a routine with no stack frame makes a sibling call, we need to
preserve the stack space check even if the local stack frame is empty,
since the call target could be a "no-split" function (in which case
the linker needs to be able to fix up the prolog sequence in order to
switch to a larger stack).
This fixes PR37807.
Reviewers: cherry, javed.absar
Subscribers: srhines, llvm-commits
Differential Revision: https://reviews.llvm.org/D48444
llvm-svn: 335604
Summary:
Adds assembly parsing support for the module summary index (follow on
to r333335 which added the assembly writing support).
I added support to llvm-as to invoke the index parsing, so that it can
create either a bitcode file with a Module and a per-module index, or
a combined index without a Module.
I will send follow on patches soon to do the following:
- add support to tools such as llvm-lto2 to parse the per-module indexes
from assembly instead of bitcode when testing the thin link.
- verification support.
Depends on D47844 and D47842.
Reviewers: pcc, dexonsmith, mehdi_amini
Subscribers: inglorion, eraman, steven_wu, llvm-commits
Differential Revision: https://reviews.llvm.org/D47905
llvm-svn: 335602
Note: I didn't add a hasOneUse() check because the existing,
related fold doesn't have that check. I suspect that the
improved analysis and codegen make these some of the rare
canonicalization cases where we allow an increase in
instructions.
llvm-svn: 335597
When the condition code for an IT instruction is "AL" we get strange "15"
predicates on subsequent instructions. These are dealt with for most
instructions by treating them as "ARMCC::AL", but VFP takes a different path
which didn't have this code.
llvm-svn: 335594
IT instructions are allowed to have the 'AL' predicate, but it must never
result in an 'NV' predicated instruction. Essentially this means that all
branches must be 't' rather than 'e' if the predicate is 'AL'.
This patch adds a diagnostic for this during assembly (error because parsing
hits an assertion if allowed to continue) and an annotation during disassembly.
llvm-svn: 335593
changeToUnreachable may remove PHI nodes from executable blocks we found values
for and we would fail to replace them. By changing dead blocks to unreachable after
we replaced constants in all executable blocks, we ensure such PHI nodes are replaced
by their known value before.
Fixes PR37780.
Reviewers: efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D48421
llvm-svn: 335588
Move expected-fail cases from directive-cpu.s to
directive-cpu-err.s. This allows us to remove the 'not' from the
llvm-mc invocation in directive-cpu.s so that this test will fail
in unexpected error cases. It also means that we are not relying
on all stderr coming before any stdout, which seems fragile.
Also make use of CHECK-NEXT to ensure that multiline error messages
really are occuring together.
And add a test to verify that .cpu with an arch version as extension
is rejected.
Differential Revision: https://reviews.llvm.org/D47873
llvm-svn: 335586
These were specifying an architecture version with .cpu directive,
which is invalid. As the error for this case outputs the problem
instruction we were still matching the expectations of FileCheck.
This patch fixes up the LSE tests to do what they seem to intend. A
follow-up patch will tighten up the directive tests.
Differential Revision: https://reviews.llvm.org/D47872
llvm-svn: 335585
Summary:
This is a follow-up to r334830 and r335031.
In the valueCoversEntireFragment check we now also handle
the situation when there is a variable length array (VLA)
involved, and the length of the array has been reduced to
a constant.
The ConvertDebugDeclareToDebugValue functions that are related
to PHI nodes and load instructions now avoid inserting dbg.value
intrinsics when the value does not, for certain, cover the
variable/fragment that should be described.
In r334830 we assumed that the value always covered the entire
var/fragment and we had assertions in the code to show that
assumption. However, those asserts failed when compiling code
with VLAs, so we removed the asserts in r335031. Now when we
know that the valueCoversEntireFragment check can fail also for
PHI/Load instructions we avoid to insert the faulty dbg.value
intrinsic in such situations. Compared to the Store instruction
scenario we simply drop the dbg.value here (as the variable does
not change its value due to PHI/Load, so an earlier dbg.value
describing the variable should still be valid).
Reviewers: aprantl, vsk, efriedma
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48547
llvm-svn: 335580
Turn canonicalized subtraction back into (-1 - B) and combine it with (A + 1) into (A - B).
This is similar to the folding already done for (B ^ -1) + Const into (-1 + Const) - B.
Differential Revision: https://reviews.llvm.org/D48535
llvm-svn: 335579
CallLoweringInfo's NumFixedArgs field gives the number of fixed arguments
before legalization. The ISD::OutputArg "Outs" array holds legalized
arguments, so when indexing into it to find the non-fixed arguemn, we need
to use the number of arguments after legalization.
Fixes PR37934.
llvm-svn: 335576
Summary:
Same idea as D48529, but restricted to X86 and done very late to avoid any surprises where subtract might be better for DAG combining.
This seems like the safest way to do this trick. And we consider doing it as a DAG combine later.
Reviewers: spatel, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48557
llvm-svn: 335575
Summary:
Adds a string saver to the ModuleSummaryIndex so it can store value
names in the case of adding a ValueInfo for a GUID when we don't
have the name stored in a Module string table. This is motivated
by the upcoming summary parser patch, where we will read value names
from the summary entry and want to store them, even when a Module
is not available.
Currently this allows us to store the name in the legacy bitcode case,
and I have added a test to show that.
Reviewers: pcc, dexonsmith
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, llvm-commits
Differential Revision: https://reviews.llvm.org/D47842
llvm-svn: 335570
This recommits r335562 and 335563 as a single commit.
The frontend will surround the intrinsic with the appropriate marshalling to/from a scalar type to match the sigature of the builtin that software expects.
By exposing the vXi1 type directly in the llvm intrinsic we make it available to optimizers much earlier. This can enable the scalar marshalling code to be optimized away.
llvm-svn: 335568
Summary:
Without this change we only add module paths to the combined index when
there is a module hash or at least one global value. Make this more
consistent by adding the module to the index whenever there is a summary
section, and it is a per-module summary (had a MODULE_CODE_SOURCE_FILENAME
record).
Since we will no longer add module paths lazily, add a new interface to get
the module info from the index that asserts it is already added.
Fixes PR37899.
Reviewers: Vlad, pcc
Subscribers: mehdi_amini, inglorion, steven_wu, llvm-commits
Differential Revision: https://reviews.llvm.org/D48511
llvm-svn: 335567
The frontend will surround the intrinsic with the appropriate marshalling to/from a scalar type to match the sigature of the builtin that software expects.
By exposing the vXi1 type directly in the llvm intrinsic we make it available to optimizers much earlier. This can enable the scalar marshalling code to be optimized away.
llvm-svn: 335563
unswitching of switches.
This works much like trivial unswitching of switches in that it reliably
moves the switch out of the loop. Here we potentially clone the entire
loop into each successor of the switch and re-point the cases at these
clones.
Due to the complexity of actually doing nontrivial unswitching, this
patch doesn't create a dedicated routine for handling switches -- it
would duplicate far too much code. Instead, it generalizes the existing
routine to handle both branches and switches as it largely reduces to
looping in a few places instead of doing something once. This actually
improves the results in some cases with branches due to being much more
careful about how dead regions of code are managed. With branches,
because exactly one clone is created and there are exactly two edges
considered, somewhat sloppy handling of the dead regions of code was
sufficient in most cases. But with switches, there are much more
complicated patterns of dead code and so I've had to move to a more
robust model generally. We still do as much pruning of the dead code
early as possible because that allows us to avoid even cloning the code.
This also surfaced another problem with nontrivial unswitching before
which is that we weren't as precise in reconstructing loops as we could
have been. This seems to have been mostly harmless, but resulted in
pointless LCSSA PHI nodes and other unnecessary cruft. With switches, we
have to get this *right*, and everything benefits from it.
While the testing may seem a bit light here because we only have two
real cases with actual switches, they do a surprisingly good job of
exercising numerous edge cases. Also, because we share the logic with
branches, most of the changes in this patch are reasonably well covered
by existing tests.
The new unswitch now has all of the same fundamental power as the old
one with the exception of the single unsound case of *partial* switch
unswitching -- that really is just loop specialization and not
unswitching at all. It doesn't fit into the canonicalization model in
any way. We can add a loop specialization pass that runs late based on
profile data if important test cases ever come up here.
Differential Revision: https://reviews.llvm.org/D47683
llvm-svn: 335553
The test cases try to test masked and unmasked isntructions at the same time. Previously the masked version relies on an extra fucntion parameter. Then the two results were combined with 'add'.
This patch gets rid of the second parameter and just passes the result of the first intrinsic into the mask argument of the second call. Then there's no need for an 'add'.
This configuration works a lot better with an upcoming patch to redefine the intrinsics to use vXi1 types for the output and mask argument.
llvm-svn: 335551