This patch implements a limited form of autolinking primarily designed to allow
either the --dependent-library compiler option, or "comment lib" pragmas (
https://docs.microsoft.com/en-us/cpp/preprocessor/comment-c-cpp?view=vs-2017) in
C/C++ e.g. #pragma comment(lib, "foo"), to cause an ELF linker to automatically
add the specified library to the link when processing the input file generated
by the compiler.
Currently this extension is unique to LLVM and LLD. However, care has been taken
to design this feature so that it could be supported by other ELF linkers.
The design goals were to provide:
- A simple linking model for developers to reason about.
- The ability to to override autolinking from the linker command line.
- Source code compatibility, where possible, with "comment lib" pragmas in other
environments (MSVC in particular).
Dependent library support is implemented differently for ELF platforms than on
the other platforms. Primarily this difference is that on ELF we pass the
dependent library specifiers directly to the linker without manipulating them.
This is in contrast to other platforms where they are mapped to a specific
linker option by the compiler. This difference is a result of the greater
variety of ELF linkers and the fact that ELF linkers tend to handle libraries in
a more complicated fashion than on other platforms. This forces us to defer
handling the specifiers to the linker.
In order to achieve a level of source code compatibility with other platforms
we have restricted this feature to work with libraries that meet the following
"reasonable" requirements:
1. There are no competing defined symbols in a given set of libraries, or
if they exist, the program owner doesn't care which is linked to their
program.
2. There may be circular dependencies between libraries.
The binary representation is a mergeable string section (SHF_MERGE,
SHF_STRINGS), called .deplibs, with custom type SHT_LLVM_DEPENDENT_LIBRARIES
(0x6fff4c04). The compiler forms this section by concatenating the arguments of
the "comment lib" pragmas and --dependent-library options in the order they are
encountered. Partial (-r, -Ur) links are handled by concatenating .deplibs
sections with the normal mergeable string section rules. As an example, #pragma
comment(lib, "foo") would result in:
.section ".deplibs","MS",@llvm_dependent_libraries,1
.asciz "foo"
For LTO, equivalent information to the contents of a the .deplibs section can be
retrieved by the LLD for bitcode input files.
LLD processes the dependent library specifiers in the following way:
1. Dependent libraries which are found from the specifiers in .deplibs sections
of relocatable object files are added when the linker decides to include that
file (which could itself be in a library) in the link. Dependent libraries
behave as if they were appended to the command line after all other options. As
a consequence the set of dependent libraries are searched last to resolve
symbols.
2. It is an error if a file cannot be found for a given specifier.
3. Any command line options in effect at the end of the command line parsing apply
to the dependent libraries, e.g. --whole-archive.
4. The linker tries to add a library or relocatable object file from each of the
strings in a .deplibs section by; first, handling the string as if it was
specified on the command line; second, by looking for the string in each of the
library search paths in turn; third, by looking for a lib<string>.a or
lib<string>.so (depending on the current mode of the linker) in each of the
library search paths.
5. A new command line option --no-dependent-libraries tells LLD to ignore the
dependent libraries.
Rationale for the above points:
1. Adding the dependent libraries last makes the process simple to understand
from a developers perspective. All linkers are able to implement this scheme.
2. Error-ing for libraries that are not found seems like better behavior than
failing the link during symbol resolution.
3. It seems useful for the user to be able to apply command line options which
will affect all of the dependent libraries. There is a potential problem of
surprise for developers, who might not realize that these options would apply
to these "invisible" input files; however, despite the potential for surprise,
this is easy for developers to reason about and gives developers the control
that they may require.
4. This algorithm takes into account all of the different ways that ELF linkers
find input files. The different search methods are tried by the linker in most
obvious to least obvious order.
5. I considered adding finer grained control over which dependent libraries were
ignored (e.g. MSVC has /nodefaultlib:<library>); however, I concluded that this
is not necessary: if finer control is required developers can fall back to using
the command line directly.
RFC thread: http://lists.llvm.org/pipermail/llvm-dev/2019-March/131004.html.
Differential Revision: https://reviews.llvm.org/D60274
llvm-svn: 360984
Summary:
Take care of some missing clean-ups that belong with r249548 and some
other copy/paste that had happened. In particular, the destructors are
no longer vtable anchors after r249548; and `setSectionName` in
`MCSectionWasm` is private and unused since r313058 culled its only
caller. The destructors are now implicitly defined, and the unused
function is removed.
Reviewers: nemanjai, jasonliu, grosbach
Reviewed By: nemanjai
Subscribers: sbc100, aheejin, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57182
llvm-svn: 353597
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Object FIle Representation
At codegen time this is emitted into the ELF file a pair of symbol indices and a weight. In assembly it looks like:
.cg_profile a, b, 32
.cg_profile freq, a, 11
.cg_profile freq, b, 20
When writing an ELF file these are put into a SHT_LLVM_CALL_GRAPH_PROFILE (0x6fff4c02) section as (uint32_t, uint32_t, uint64_t) tuples as (from symbol index, to symbol index, weight).
Differential Revision: https://reviews.llvm.org/D44965
llvm-svn: 333823
Introduce an extension to support passing linker options to the linker.
These would be ignored by older linkers, but newer linkers which support
this feature would be able to process the linker.
Emit a special discarded section `.linker-option`. The content of this
section is a pair of strings (key, value). The key is a type identifier for
the parameter. This allows for an argument free parameter that will be
processed by the linker with the value being the parameter. As an example,
`lib` identifies a library to be linked against, traditionally the `-l`
argument for Unix-based linkers with the parameter being the library name.
Thanks to James Henderson, Cary Coutant, Rafael Espinolda, Sean Silva
for the valuable discussion on the design of this feature.
llvm-svn: 323783
Summary:
isThumb returns true for Thumb triples (little and big endian), isARM
returns true for ARM triples (little and big endian).
There are a few more checks using arm/thumb that are not covered by
those functions, e.g. that the architecture is either ARM or Thumb
(little endian) or ARM/Thumb little endian only.
Reviewers: javed.absar, rengolin, kristof.beyls, t.p.northover
Reviewed By: rengolin
Subscribers: llvm-commits, aemerson
Differential Revision: https://reviews.llvm.org/D34682
llvm-svn: 310781
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Make MCSectionELF::AssociatedSection be a link to a symbol, because
that's how it works in the assembly, and use it in the asm printer.
llvm-svn: 297769
All MIPS .debug_* sections should be marked with ELF type SHT_MIPS_DWARF
accordingly the specification [1]. Also the same section type is assigned
to these sections by GNU tools.
[1] ftp.software.ibm.com/software/os390/czos/dwarf/mips_extensions.pdf
Differential Revision: https://reviews.llvm.org/D29789
llvm-svn: 297447
GAS supports specification of section header's type using a numeric
value [1]. This patch brings the same functionality to LLVM. That allows
to setup some target-specific section types belong to the SHT_LOPROC -
SHT_HIPROC range. If we attempt to print unknown section type, MCSectionELF
class shows an error message. It's better than print sole '@' sign
without any section type name.
In case of MIPS, example of such section's type is SHT_MIPS_DWARF.
Without the patch we will have to implement some workarounds
in probably not-MIPS-specific part of code base to convert SHT_MIPS_DWARF
to the @progbits while printing assembly and to assign SHT_MIPS_DWARF for
@progbits sections named .debug_* if we encounter such section in
an input assembly.
[1] https://sourceware.org/binutils/docs/as/Section.html
Differential Revision: https://reviews.llvm.org/D29719
llvm-svn: 297446
Different architectures can have different meaning for flags in the
SHF_MASKPROC mask, so we should always check what the architecture use
before checking the flag.
NFC for now, but will allow fixing the value of an xmos flag.
llvm-svn: 293484
This implements execute-only support for ARM code generation, which
prevents the compiler from generating data accesses to code sections.
The following changes are involved:
* Add the CodeGen option "-arm-execute-only" to the ARM code generator.
* Add the clang flag "-mexecute-only" as well as the GCC-compatible
alias "-mpure-code" to enable this option.
* When enabled, literal pools are replaced with MOVW/MOVT instructions,
with VMOV used in addition for floating-point literals. As the MOVT
instruction is required, execute-only support is only available in
Thumb mode for targets supporting ARMv8-M baseline or Thumb2.
* Jump tables are placed in data sections when in execute-only mode.
* The execute-only text section is assigned section ID 0, and is
marked as unreadable with the SHF_ARM_PURECODE flag with symbol 'y'.
This also overrides selection of ELF sections for globals.
llvm-svn: 289784
We now create the .eh_frame section early, just like every other special
section.
This means that the special flags are visible in code that explicitly
asks for ".eh_frame".
llvm-svn: 252313
Summary:
The default behavior is to omit the .section directive for .text, .data,
and sometimes .bss, but some targets may want to omit this directive for
other sections too.
The AMDGPU backend will uses this to emit a simplified syntax for section
switches. For example if the section directive is not omitted (current
behavior), section switches to .hsatext will be printed like this:
.section .hsatext,#alloc,#execinstr,#write
This is actually wrong, because .hsatext has some custom STT_* flags,
which MC doesn't know how to print or parse.
If the section directive is omitted (made possible by this commit),
section switches will be printed like this:
.hsatext
The motivation for this patch is to make it possible to emit sections
with custom STT_* flags without having to teach MC about all the target
specific STT_* flags.
Reviewers: rafael, grosbach
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12423
llvm-svn: 248618
This allows the compiler/assembly programmer to switch back to a
section. This in turn fixes the bootstrap failure on powerpc (tested
on gcc110) without changing the ppc codegen at all.
I will try to cleanup the various getELFSection overloads in a followup patch.
Just using a default argument now would lead to ambiguities.
llvm-svn: 234099
Add support for having multiple sections with the same name and comdat.
Using this in combination with -ffunction-sections allows LLVM to output a .o
file with mulitple sections named .text. This saves space by avoiding long
unique names of the form .text.<C++ mangled name>.
llvm-svn: 229541
regressions for LLDB on Linux. Rafael indicated on lldb-dev that we
should just go ahead and revert these but that he wasn't at a computer.
The patches backed out are as follows:
r228980: Add support for having multiple sections with the name and ...
r228889: Invert the section relocation map.
r228888: Use the existing SymbolTableIndex intsead of doing a lookup.
r228886: Create the Section -> Rel Section map when it is first needed.
These patches look pretty nice to me, so hoping its not too hard to get
them re-instated. =D
llvm-svn: 229080
Using this in combination with -ffunction-sections allows LLVM to output a .o
file with mulitple sections named .text. This saves space by avoiding long
unique names of the form .text.<C++ mangled name>.
llvm-svn: 228980
Any code creating an MCSectionELF knows ELF and already provides the flags.
SectionKind is an abstraction used by common code that uses a plain
MCSection.
Use the flags to compute the SectionKind. This removes a lot of
guessing and boilerplate from the MCSectionELF construction.
llvm-svn: 227476
Accepting quotes is a property of an assembler, not of an object file. For
example, ELF can support any names for sections and symbols, but the gnu
assembler only accepts quotes in some contexts and llvm-mc in a few more.
LLVM should not produce different symbols based on a guess about which assembler
will be reading the code it is printing.
llvm-svn: 194575