This CL splits the lowering of affine to LLVM into 2 parts:
1. affine -> std
2. std -> LLVM
The conversions mostly consists of splitting concerns between the affine and non-affine worlds from existing conversions.
Short-circuiting of affine `if` conditions was never tested or exercised and is removed in the process, it can be reintroduced later if needed.
LoopParametricTiling.cpp is updated to reflect the newly added ForOp::build.
PiperOrigin-RevId: 257794436
This allows for the attribute to hold symbolic references to other operations than FuncOp. This also allows for removing the dependence on FuncOp from the base Builder.
PiperOrigin-RevId: 257650017
There is already a more general 'getParentOfType' method, and 'getModule' is likely to be misused as functions get placed within different regions than ModuleOp.
PiperOrigin-RevId: 257442243
Change the AsmPrinter to number values breadth-first so that values in adjacent regions can have the same name. This allows for ModuleOp to contain operations that produce results. This also standardizes the special name of region entry arguments to "arg[0-9+]" now that Functions are also operations.
PiperOrigin-RevId: 257225069
Modules can now contain more than just Functions, this just updates the iteration API to reflect that. The 'begin'/'end' methods have also been updated to iterate over opaque Operations.
PiperOrigin-RevId: 257099084
These methods assume that a function is a valid builtin top-level operation, and removing these methods allows for decoupling FuncOp and IR/. Utility "getParentOfType" methods have been added to Operation/OpState to allow for querying the first parent operation of a given type.
PiperOrigin-RevId: 257018913
Address ClangTidy finding:
* std::move of the expression of the trivially-copyable type 'mlir::Module' (aka 'mlir::ModuleOp') has no effect; remove std::move()
PiperOrigin-RevId: 256981849
This is an important step in allowing for the top-level of the IR to be extensible. FuncOp and ModuleOp contain all of the necessary functionality, while using the existing operation infrastructure. As an interim step, many of the usages of Function and Module, including the name, will remain the same. In the future, many of these will be relaxed to allow for many different types of top-level operations to co-exist.
PiperOrigin-RevId: 256427100
As Functions/Modules becomes operations, these methods will conflict with the 'verify' hook already on derived operation types.
PiperOrigin-RevId: 256246112
As with Functions, Module will soon become an operation, which are value-typed. This eases the transition from Module to ModuleOp. A new class, OwningModuleRef is provided to allow for owning a reference to a Module, and will auto-delete the held module on destruction.
PiperOrigin-RevId: 256196193
Move the data members out of Function and into a new impl storage class 'FunctionStorage'. This allows for Function to become value typed, which will greatly simplify the transition of Function to FuncOp(given that FuncOp is also value typed).
PiperOrigin-RevId: 255983022
This functionality is now moved to a new class, ModuleManager. This class allows for inserting functions into a module, and will auto-rename them on insert to ensure a unique name. This now means that users adding new functions to a module must ensure that the function name is unique, as the Module will no longer do it automatically. This also means that Module::getNamedFunction now operates in O(N) instead of the O(c) time it did before. This simplifies the move of Modules to Operations as the ModuleOp will not be able to have this functionality.
PiperOrigin-RevId: 255846088
During conversion, if a type conversion has dangling uses a type conversion must persist after conversion has finished to maintain valid IR. In these cases, we now query the TypeConverter to materialize a conversion for us. This allows for the default case of a full conversion to continue working as expected, but also handle the degenerate cases more robustly.
PiperOrigin-RevId: 255637171
Remove the ability to print an attribute without a type, but allow for attributes to elide the type under certain circumstances. This fixes a bug where attributes within ArrayAttr, and other collection attributes, would never print the type.
PiperOrigin-RevId: 255306974
Now that Locations are attributes, they have direct access to the MLIR context. This allows for simplifying error emission by removing unnecessary context lookups.
PiperOrigin-RevId: 255112791
The current syntax separates the name and value with ':', but ':' is already overloaded by several other things(e.g. trailing types). This makes the syntax difficult to parse in some situtations:
Old:
"foo: 10 : i32"
New:
"foo = 10 : i32"
PiperOrigin-RevId: 255097928
Enable reusing the real mlir-opt main from unit tests and in case where
additional initialization needs to happen before main is invoked (e.g., when
using different command line flag libraries).
PiperOrigin-RevId: 254764575
Now that Locations are Attributes they contain a direct reference to the MLIRContext, i.e. the context can be directly accessed from the given location instead of being explicitly passed in.
PiperOrigin-RevId: 254568329
Conversions from dialect A to dialect B depend on both A and B. Therefore, it
is reasonable for them to live in a separate library that depends on both
DialectA and DialectB library, and does not forces dependees of DialectA or
DialectB to also link in the conversion. Create the directory layout for the
conversions and move the Standard to LLVM dialect conversion as the first
example.
PiperOrigin-RevId: 253312252
* 'get' methods that allow constructing from an ArrayRef of integer or floating point values.
* A 'reshape' method to allow for changing the shape without changing the underlying data.
PiperOrigin-RevId: 252067898
* Add a getCurrentLocation that returns the location directly.
* Add parseOperandList/parseTrailingOperandList overloads without the required operand count.
PiperOrigin-RevId: 251585488
To accomplish this, moving forward users will need to provide a legalization target that defines what operations are legal for the conversion. A target can mark an operation as legal by providing a specific legalization action. The initial actions are:
* Legal
- This action signals that every instance of the given operation is legal,
i.e. any combination of attributes, operands, types, etc. is valid.
* Dynamic
- This action signals that only some instances of a given operation are legal. This
allows for defining fine-tune constraints, like say std.add is only legal when
operating on 32-bit integers.
An example target is shown below:
struct MyTarget : public ConversionTarget {
MyTarget(MLIRContext &ctx) : ConversionTarget(ctx) {
// All operations in the LLVM dialect are legal.
addLegalDialect<LLVMDialect>();
// std.constant op is always legal on this target.
addLegalOp<ConstantOp>();
// std.return op has dynamic legality constraints.
addDynamicallyLegalOp<ReturnOp>();
}
/// Implement the custom legalization handler to handle
/// std.return.
bool isLegal(Operation *op) override {
// Process the dynamic handling for a std.return op (and any others that were
// marked "dynamic").
...
}
};
PiperOrigin-RevId: 251289374
These were just introduced by a previous CL moving MemRef getRank to return int64_t. size_t could be smaller than 64 bits and in equals comparisons, signed vs unsigned doesn't matter. In these cases, we know right now that the particular int64_t is not larger than max size_t (because it currently comes directly from a size() call), the alternative cast plus equals comparison is always safe, so we might as well do it that way and no longer require reasoning deeper into the callstack.
We are already assuming that size() calls fit into int64_t in a number of other cases like the aforementioned getRank() (since exabytes of RAM are rare). If we want to avoid this assumption we will have to come up with a principled way to do it throughout.
--
PiperOrigin-RevId: 250980297
* the 'empty' method should be used to check for emptiness instead of 'size'
* using decl 'CapturableHandle' is unused
* redundant get() call on smart pointer
* using decl 'apply' is unused
* using decl 'ScopeGuard' is unused
--
PiperOrigin-RevId: 250623863
Using ArrayRef introduces issues with the order of evaluation between a constructor and
the arguments of the subsequent calls to the `operator()`.
As a consequence the order of captures is not well-defined can go wrong with certain compilers (e.g. gcc-6.4).
This CL fixes the issue by using lambdas in lieu of ArrayRef.
--
PiperOrigin-RevId: 249114775
Originally, ExecutionEngine was created before MLIR had a proper pass
management infrastructure or an LLVM IR dialect (using the LLVM target
directly). It has been running a bunch of lowering passes to convert the input
IR from Standard+Affine dialects to LLVM IR and, later, to the LLVM IR dialect.
This is no longer necessary and is even undesirable for compilation flows that
perform their own conversion to the LLVM IR dialect. Drop this integration and
make ExecutionEngine accept only the LLVM IR dialect. Users of the
ExecutionEngine can call the relevant passes themselves.
--
PiperOrigin-RevId: 249004676
This means that we can now do something like:
ctx->getRegisteredDialect<LLVMDialect>();
as opposed to:
static_cast<LLVMDialect *>(ctx->getRegisteredDialect("llvm");
--
PiperOrigin-RevId: 247989896
This CL implements the previously unsupported parsing for Range, View and Slice operations.
A pass is introduced to lower to the LLVM.
Tests are moved out of C++ land and into mlir/test/Examples.
This allows better fitting within standard developer workflows.
--
PiperOrigin-RevId: 245796600
This CL starts implementing a Linalg dialect with the objective of supporting
optimizing compilation of loops and library calls for a subset of common linear
algebra operations.
This CL starts by simply adding a linalg.range type and an operation with the
proper roundtripping test.
--
PiperOrigin-RevId: 244189468
other characters within the <>'s now that we can. This will allow quantized
types to use the pretty syntax (among others) after a few changes.
--
PiperOrigin-RevId: 243521268
This allows client to be able to reuse the same logic to setup a module
for the ExecutionEngine without instanciating one. One use case is running
the optimization pipeline but not JIT-ing.
--
PiperOrigin-RevId: 242614380
TensorContractionBase has become too unwieldy with all the CRTP manipulation once less trivial transformations are implemented.
This CL drops CRTP for inheritance and uses the same name comparison trick to figure out what to cast into.
As a byproduct, all the -inl.h files disappear.
To maintain the separation between directories, a LINALG_STEP variable is introduced
--
PiperOrigin-RevId: 242546977
This dialect does not have a global constructor and has to be registered
manually in `main`. Also fix the way it is exercised in the test.
--
PiperOrigin-RevId: 242434886
For some reason, the OSS build on macOS was not happy with the initialization
syntax and was attempting to call a copy constructor. Hotfix it to use a
different syntax pending further investigation.
--
PiperOrigin-RevId: 242432634
making the IR dumps much nicer.
This is part 2/3 of the path to making dialect types more nice. Part 3/3 will
slightly generalize the set of characters allowed in pretty types and make it
more principled.
--
PiperOrigin-RevId: 242249955