to declaresSameEntity(), as a baby step toward tracking forward
declarations of Objective-C classes precisely. Part of
<rdar://problem/10583531>.
llvm-svn: 146618
The new metadata are method @encode strings with additional data.
1. Each Objective-C object is marked with its class name and protocol names.
The same is done for property @encode already.
2. Each block object is marked with its function prototype's @encoding. For
example, a method parameter that is a block object that itself returns void
and takes an int would look like:
@?<v@?i>
These new method @encode strings are stored in a single array pointed to by structs protocol_t and objc_protocol_ext.
Patch provided by Greg Parker!
llvm-svn: 145469
it contains give it a USR based on its semantic context, which is the interface.
This follows what we already did for objc methods. rdar://10371669
llvm-svn: 143464
The code had it backwards, thinking size_t was signed, and using that for "%zd".
Also let the analysis get the types for (u)intmax_t while we are at it.
llvm-svn: 143099
expressions: expressions which refer to a logical rather
than a physical l-value, where the logical object is
actually accessed via custom getter/setter code.
A subsequent patch will generalize the AST for these
so that arbitrary "implementing" sub-expressions can
be provided.
Right now the only client is ObjC properties, but
this should be generalizable to similar language
features, e.g. Managed C++'s __property methods.
llvm-svn: 142914
- Remodel Expr::EvaluateAsInt to behave like the other EvaluateAs* functions,
and add Expr::EvaluateKnownConstInt to capture the current fold-or-assert
behaviour.
- Factor out evaluation of bitfield bit widths.
- Fix a few places which would evaluate an expression twice: once to determine
whether it is a constant expression, then again to get the value.
llvm-svn: 141561
return to one which does not return (has noreturn attribute)
should warn as it is an unsafe assignment. // rdar://10095762
c++ already handles this. This is the c version.
llvm-svn: 141141
Instead of always storing all source locations for the selector identifiers
we check whether all the identifiers are in a "standard" position; "standard" position is
-Immediately before the arguments: -(id)first:(int)x second:(int)y;
-With a space between the arguments: -(id)first: (int)x second: (int)y;
-For nullary selectors, immediately before ';': -(void)release;
In such cases we infer the locations instead of storing them.
llvm-svn: 140989
to the consumer without being fully deserialized).
The regression was on compiling boost.python and it was too difficult to get a reduced
test case unfortunately.
Also modify the logic of how objc methods are getting passed to the consumer;
codegen depended on receiving objc methods before the implementation decl.
Since the interesting objc methods are ones with a body and such methods only
exist inside an ObjCImplDecl, deserialize and pass to consumer all the methods
of ObCImplDecl when we see one.
Fixes http://llvm.org/PR10922 & rdar://10117105.
llvm-svn: 139644
language options. Use that .def file to declare the LangOptions class
and initialize all of its members, eliminating a source of annoying
initialization bugs.
AST serialization changes are next up.
llvm-svn: 139605
than having CodeGen check whether a declaration comes from an AST file
(which it shouldn't know or care about), make sure that the AST writer and
reader pass along "interesting" declarations that CodeGen needs to
know about.
llvm-svn: 139441
'id' that can be used (only!) via a contextual keyword as the result
type of an Objective-C message send. 'instancetype' then gives the
method a related result type, which we have already been inferring for
a variety of methods (new, alloc, init, self, retain). Addresses
<rdar://problem/9267640>.
llvm-svn: 139275
builtin types (When requested). This is another step toward making
ASTUnit build the ASTContext as needed when loading an AST file,
rather than doing so after the fact. No actual functionality change (yet).
llvm-svn: 138985
LangOptions, rather than making distinct copies of
LangOptions. Granted, LangOptions doesn't actually get modified, but
this will eventually make it easier to construct ASTContext and
Preprocessor before we know all of the LangOptions.
llvm-svn: 138959
Example:
template <class T>
class A {
public:
template <class U> void f(U p) { }
template <> void f(int p) { } // <== class scope specialization
};
This extension is necessary to parse MSVC standard C++ headers, MFC and ATL code.
BTW, with this feature in, clang can parse (-fsyntax-only) all the MSVC 2010 standard header files without any error.
llvm-svn: 137573
type over into the AST context, then make that declaration a
predefined declaration in the AST format. This ensures that different
AST files will at least agree on the (global) declaration ID for 'id',
and eliminates one of the "special" types in the AST file format.
llvm-svn: 137429
ASTContext with accessors/mutators. The only functional change is that
the AST writer won't bother writing the id/Class/SEL redefinition type
if it hasn't been explicitly set; previously, it ended up being
written as a synonym for the built-in id/Class/SEL.
llvm-svn: 137349
enumerations from the ASTContext into CodeGen, so that we don't need
to serialize it to AST files. This appears to be the last of the
low-hanging fruit for SpecialTypes.
llvm-svn: 137124
layout of a constant NSString from the ASTContext over to CodeGen,
since this is solely CodeGen's responsibility. Eliminates one of the
unnecessary "special" types that we serialize.
llvm-svn: 137121
This was previously not-const only because it has to lazily construct a chain
of ivars the first time it is called (and after the chain is invalidated).
In practice, all the clients were just const_casting their const Decls;
all those now-unnecessary const_casts have been removed.
llvm-svn: 135741
-Remove unnecessary 'return'.
-Remove unnecessary 'if' check (llvm_unreachable make sure attrStr will be non-null)
-Add a test of transferring ownership to a reference cast type.
llvm-svn: 134285
cast type has no ownership specified, implicitly "transfer" the ownership of the cast'ed type
to the cast type:
id x;
static_cast<NSString**>(&x); // Casting as (__strong NSString**).
This currently only works for C++ named casts, C casts to follow.
llvm-svn: 134273
type/expression/template argument/etc. is instantiation-dependent if
it somehow involves a template parameter, even if it doesn't meet the
requirements for the more common kinds of dependence (dependent type,
type-dependent expression, value-dependent expression).
When we see an instantiation-dependent type, we know we always need to
perform substitution into that instantiation-dependent type. This
keeps us from short-circuiting evaluation in places where we
shouldn't, and lets us properly implement C++0x [temp.type]p2.
In theory, this would also allow us to properly mangle
instantiation-dependent-but-not-dependent decltype types per the
Itanium C++ ABI, but we aren't quite there because we still mangle
based on the canonical type in cases like, e.g.,
template<unsigned> struct A { };
template<typename T>
void f(A<sizeof(sizeof(decltype(T() + T())))>) { }
template void f<int>(A<sizeof(sizeof(int))>);
and therefore get the wrong answer.
llvm-svn: 134225
for a template template parameter.
Uses to follow.
I've also made the uniquing of SubstTemplateTemplateParmPacks
use a ContextualFoldingSet as a minor space efficiency.
llvm-svn: 134137
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
were just punting on template argument deduction for a number of type
nodes. Most of them, obviously, didn't matter.
As a consequence of this, make extended vector types (via the
ext_vector_type attribute) actually work properly for several
important cases:
- If the attribute appears in a type-id (i.e, not attached to a
typedef), actually build a proper vector type
- Build ExtVectorType whenever the size is constant; previously, we
were building DependentSizedExtVectorType when the size was constant
but the type was dependent, which makes no sense at all.
- Teach template argument deduction to handle
ExtVectorType/DependentSizedExtVectorType.
llvm-svn: 133060
parameter types to be ill-formed. However, it relies on the
completeness of method parameter types when producing metadata, e.g.,
for a protocol, leading IR generating to crash in such cases.
Since there's no real way to tighten down the semantics of Objective-C
here without breaking existing code, do something safe but lame:
suppress the generation of metadata when this happens.
Fixes <rdar://problem/9123036>.
llvm-svn: 132171
behind implicit moves. We now correctly identify move constructors and
assignment operators and update bits on the record correctly. Generation
of implicit moves (declarations or definitions) is not yet supported.
llvm-svn: 132080
type that turns one type into another. This is used as the basis to
implement __underlying_type properly - with TypeSourceInfo and proper
behavior in the face of templates.
llvm-svn: 132017
Go through and expand the members of bases into the encoding string (and encode the VTable as well).
Unlike gcc which expands virtual bases as many times as they appear in the
hierarchy, clang will only expand them once at the end, to reflect the actual layout.
Note that there doesn't seem to be a way to indicate in the encoding that
packing/alignment of members is different that normal, in which case
the encoding will be out-of-sync with the real layout.
If the runtime switches to just consider the size of types without
taking into account alignment, we could easily make padding explicit in the
encoding (e.g. using arrays of chars). The encoding strings would be
longer then though.
Also encode a flexible array member as array of 0 size, like gcc, not as a pointer.
llvm-svn: 131365
- New isDefined() function checks for deletedness
- isThisDeclarationADefinition checks for deletedness
- New doesThisDeclarationHaveABody() does what
isThisDeclarationADefinition() used to do
- The IsDeleted bit is not propagated across redeclarations
- isDeleted() now checks the canoncial declaration
- New isDeletedAsWritten() does what it says on the tin.
- isUserProvided() now correct (thanks Richard!)
This fixes the bug that we weren't catching
void foo() = delete;
void foo() {}
as being a redefinition.
llvm-svn: 131013
Adjacent bit fields are packed into the same 1-, 2-, or
4-byte allocation unit if the integral types are the same
size. // rdar://8823265.
llvm-svn: 130851
accompanying fixes to make it work today.
The core of this patch is to provide a link from a TemplateTypeParmType
back to the TemplateTypeParmDecl node which declared it. This in turn
provides much more precise information about the type, where it came
from, and how it functions for AST consumers.
To make the patch work almost a year after its first attempt, it needed
serialization support, and it now retains the old getName() interface.
Finally, it requires us to not attempt to instantiate the type in an
unsupported friend decl -- specifically those coming from template
friend decls but which refer to a specific type through a dependent
name.
A cleaner representation of the last item would be to build
FriendTemplateDecl nodes for these, storing their template parameters
etc, and to perform proper instantation of them like any other template
declaration. They can still be flagged as unsupported for the purpose of
access checking, etc.
This passed an asserts-enabled bootstrap for me, and the reduced test
case mentioned in the original review thread no longer causes issues,
likely fixed at somewhere amidst the 24k revisions that have elapsed.
llvm-svn: 130628
The size of the array may not be aligned according to alignment of its elements if an alignment attribute is
specified in a typedef. Fixes rdar://8665729 & http://llvm.org/PR5637.
llvm-svn: 130242
member function, i.e. something of the form 'x.f' where 'f' is a non-static
member function. Diagnose this in the general case. Some of the new diagnostics
are probably worse than the old ones, but we now get this right much more
universally, and there's certainly room for improvement in the diagnostics.
llvm-svn: 130239
alignment, which causes traps further down the line. Fixes
<rdar://problem/9109755>, which contains a test case far too large to
commit :(
llvm-svn: 129861
The idea is that you can create a VarDecl with an unknown type, or a
FunctionDecl with an unknown return type, and it will still be valid to
access that object as long as you explicitly cast it at every use. I'm
still going back and forth about how I want to test this effectively, but
I wanted to go ahead and provide a skeletal implementation for the LLDB
folks' benefit and because it also improves some diagnostic goodness for
placeholder expressions.
llvm-svn: 129065
which versions of an OS provide a certain facility. For example,
void foo()
__attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6)));
says that the function "foo" was introduced in 10.2, deprecated in
10.4, and completely obsoleted in 10.6. This attribute ties in with
the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that
we want to deploy back to Mac OS X 10.1). There are several concrete
behaviors that this attribute enables, as illustrated with the
function foo() above:
- If we choose a deployment target >= Mac OS X 10.4, uses of "foo"
will result in a deprecation warning, as if we had placed
attribute((deprecated)) on it (but with a better diagnostic)
- If we choose a deployment target >= Mac OS X 10.6, uses of "foo"
will result in an "unavailable" warning (in C)/error (in C++), as
if we had placed attribute((unavailable)) on it
- If we choose a deployment target prior to 10.2, foo() is
weak-imported (if it is a kind of entity that can be weak
imported), as if we had placed the weak_import attribute on it.
Naturally, there can be multiple availability attributes on a
declaration, for different platforms; only the current platform
matters when checking availability attributes.
The only platforms this attribute currently works for are "ios" and
"macosx", since we already have -mxxxx-version-min flags for them and we
have experience there with macro tricks translating down to the
deprecated/unavailable/weak_import attributes. The end goal is to open
this up to other platforms, and even extension to other "platforms"
that are really libraries (say, through a #pragma clang
define_system), but that hasn't yet been designed and we may want to
shake out more issues with this narrower problem first.
Addresses <rdar://problem/6690412>.
As a drive-by bug-fix, if an entity is both deprecated and
unavailable, we only emit the "unavailable" diagnostic.
llvm-svn: 128127
add support for the OpenCL __private, __local, __constant and
__global address spaces, as well as the __read_only, _read_write and
__write_only image access specifiers. Patch originally by ARM;
language-specific address space support by myself.
llvm-svn: 127915
Change the interface to expose the new information and deal with the enormous fallout.
Introduce the new ExceptionSpecificationType value EST_DynamicNone to more easily deal with empty throw specifications.
Update the tests for noexcept and fix the various bugs uncovered, such as lack of tentative parsing support.
llvm-svn: 127537
CXXDependentScopeMemberExpr, and clean up instantiation of
nested-name-specifiers with dependent template specialization types in
the process.
llvm-svn: 126663
* Add default implementations (no-op) for ExternalASTSource's pure virtual functions. There are valid use cases that can live with these defaults.
* Move ExternalASTSource's out of line implementations into separate source file.
* Whitespace, forward decl, #include cleanup.
llvm-svn: 126648
nested-name-specifier, e.g.,
T::template apply<U>::
represent the dependent template name specialization as a
DependentTemplateSpecializationType, rather than a
TemplateSpecializationType with a dependent TemplateName.
llvm-svn: 126593
way it keeps track of namespaces. Previously, we would map from the
namespace alias to its underlying namespace when building a
nested-name-specifier, losing source information in the process.
llvm-svn: 126358
invocation function into the debug info. Rather than faking up a class,
which is tricky because of the custom layout we do, we just emit a struct
directly from the layout information we've already got.
Also, don't emit an unnecessarily parameter alloca for this "variable".
llvm-svn: 126255
* Flag indicating 'we're parsing this auto typed variable's initializer' moved from VarDecl to Sema
* Temporary template parameter list for auto deduction is now allocated on the stack.
* Deduced 'auto' types are now uniqued.
llvm-svn: 126139
is unqualified but its initialized is qualified.
This is for c only and fixes the imm. problem.
c++ is more involved and is wip.
// rdar://8979379
llvm-svn: 125386
linkage into Decl.cpp. Disable this logic for extern "C" functions, because
the operative rule there is weaker. Fixes rdar://problem/8898466
llvm-svn: 125268
- BlockDeclRefExprs always store VarDecls
- BDREs no longer store copy expressions
- BlockDecls now store a list of captured variables, information about
how they're captured, and a copy expression if necessary
With that in hand, change IR generation to use the captures data in
blocks instead of walking the block independently.
Additionally, optimize block layout by emitting fields in descending
alignment order, with a heuristic for filling in words when alignment
of the end of the block header is insufficient for the most aligned
field.
llvm-svn: 125005
generate meaningful [*] template argument location information.
[*] Well, as meaningful as possible, given that this entire code path
is a hack for when we've lost type-source information.
llvm-svn: 124211
a pack expansion, e.g., the parameter pack Values in:
template<typename ...Types>
struct Outer {
template<Types ...Values>
struct Inner;
};
This new implementation approach introduces the notion of an
"expanded" non-type template parameter pack, for which we have already
expanded the types of the parameter pack (to, say, "int*, float*",
for Outer<int*, float*>) but have not yet expanded the values. Aside
from creating these expanded non-type template parameter packs, this
patch updates template argument checking and non-type template
parameter pack instantiation to make use of the appropriate types in
the parameter pack.
llvm-svn: 123845
outermost array types and not on the element type. Move the CanonicalType
member from Type to ExtQualsTypeCommonBase; the canonical type on an ExtQuals
node includes the qualifiers on the ExtQuals. Assorted optimizations enabled
by this change.
getQualifiers(), hasQualifiers(), etc. should all now implicitly look through
array types.
llvm-svn: 123817
::getCVRQualifiers() now look through array types, like all the other
standard queries. Also, make a 'split' variant of getUnqualifiedType().
llvm-svn: 123751
template template parameter pack that cannot be fully expanded because
its enclosing pack expansion could not be expanded. This form of
TemplateName plays the same role as SubstTemplateTypeParmPackType and
SubstNonTypeTemplateParmPackExpr do for template type parameter packs
and non-type template parameter packs, respectively.
We should now handle these multi-level pack expansion substitutions
anywhere. The largest remaining gap in our variadic-templates support
is that we cannot cope with non-type template parameter packs whose
type is a pack expansion.
llvm-svn: 123521
expansion, when it is known due to the substitution of an out
parameter pack. This allows us to properly handle substitution into
pack expansions that involve multiple parameter packs at different
template parameter levels, even when this substitution happens one
level at a time (as with partial specializations of member class
templates and the signatures of member function templates).
Note that the diagnostic we provide when there is an arity mismatch
between an outer parameter pack and an inner parameter pack in this
case isn't as clear as the normal diagnostic for an arity
mismatch. However, this doesn't matter because these cases are very,
very rare and (even then) only typically occur in a SFINAE context.
The other kinds of pack expansions (expression, template, etc.) still
need to support optional tracking of the number of expansions, and we
need the moral equivalent of SubstTemplateTypeParmPackType for
substituted argument packs of template template and non-type template
parameters.
llvm-svn: 123448
involve template parameter packs at multiple template levels that
occur within the signatures members of class templates (and partial
specializations thereof). This is a work-in-progress that is deficient
in several ways, notably:
- It only works for template type parameter packs, but we need to
also support non-type template parameter packs and template template
parameter packs.
- It doesn't keep track of the lengths of the substituted argument
packs in the expansion, so it can't properly diagnose length
mismatches.
However, this is a concrete step in the right direction.
llvm-svn: 123425
process, perform a number of refactorings:
- Move MiscNameMangler member functions to MangleContext
- Remove GlobalDecl dependency from MangleContext
- Make MangleContext abstract and move Itanium/Microsoft functionality
to their own classes/files
- Implement ASTContext::createMangleContext and have CodeGen use it
No (intended) functionality change.
llvm-svn: 123386
The initial TreeTransform is a cop-out, but it's more-or-less equivalent
to what we were doing before, or rather what we're doing now and might
eventually stop doing in favor of using this type.
I am simultaneously intrigued by the possibilities of rebuilding a
dependent Attri
llvm-svn: 122942
expansions with something that is easier to use correctly: a new
template argment kind, rather than a bit on an existing kind. Update
all of the switch statements that deal with template arguments, fixing
a few latent bugs in the process. I"m happy with this representation,
now.
And, oh look! Template instantiation and deduction work for template
template argument pack expansions.
llvm-svn: 122896
16-bits in size. Implement this by splitting WChar into two enums, like we have
for char. This fixes a miscompmilation of XULRunner, PR8856.
llvm-svn: 122558
packs, e.g.,
template<typename T, unsigned ...Dims> struct multi_array;
along with semantic analysis support for finding unexpanded non-type
template parameter packs in types, expressions, and so on.
Template instantiation involving non-type template parameter packs
probably doesn't work yet. That'll come soon.
llvm-svn: 122527
new gcc warning that complains on self-assignments and
self-initializations. Fix one bug found by the warning, in which one
clang::OverloadCandidate constructor failed to initialize its
FunctionTemplate member.
llvm-svn: 122459
area of printing template arguments. The functionality changes here
are limited to cases of variadic templates that aren't yet enabled.
llvm-svn: 122250
pack expansions, e.g. given
template<typename... Types> struct tuple;
template<typename... Types>
struct tuple_of_refs {
typedef tuple<Types&...> types;
};
the type of the "types" typedef is a PackExpansionType whose pattern
is Types&.
This commit introduces support for creating pack expansions for
template type arguments, as above, but not for any other kind of pack
expansion, nor for any form of instantiation.
llvm-svn: 122223
class to be passed around. The line between argument and return types and
everything else is kindof vague, but I think it's justifiable.
llvm-svn: 121752
space better. Remove this reference. To make that work, change some APIs
(most importantly, getDesugaredType()) to take an ASTContext& if they
need to return a QualType. Simultaneously, diminish the need to return a
QualType by introducing some useful APIs on SplitQualType, which is
just a std::pair<const Type *, Qualifiers>.
llvm-svn: 121478
increasing the required type alignment from 8 to 16. This provides a
2.5% speedup for -fsyntax-only on a token-cached Cocoa.h, while only
increasing memory consumption in the ASTContext by 0.8%.
llvm-svn: 121474
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
llvm-svn: 121121
This is needed for Neon types when it is most natural to define them in terms
of a typedef. For example, Neon poly8_t is a typedef for "signed char", and
we want to define polynomial vectors as vectors of that typedef. Without this
change, the result will be a generic GCC-style vector. I think this is safe
for other vector types as well, but I would appreciate a review of this.
llvm-svn: 119300
NEON vector types need to be mangled in a special way to comply with ARM's ABI,
similar to some of the AltiVec-specific vector types. This patch is mostly
just renaming a bunch of "AltiVecSpecific" things, since they will no longer
be specific to AltiVec. Besides that, it just adds the new "NeonVector" enum.
llvm-svn: 118724
mangler. Now member functions and pointers thereof have their calling
convention mangled as __thiscall if they have the default CC (even though,
they technically still have the __cdecl CC).
llvm-svn: 118598
abstractions (e.g., TemplateArgumentListBuilder) that were designed to
support variadic templates. Only a few remnants of variadic templates
remain, in the parser (parsing template type parameter packs), AST
(template type parameter pack bits and TemplateArgument::Pack), and
Sema; these are expected to be used in a future implementation of
variadic templates.
But don't get too excited about that happening now.
llvm-svn: 118385
or dependent specializations, rip apart the dependent name/dependent
specialization to recanonicalize its pieces, because
nested-name-specifiers store "dependent-type::identifier" differently
than types do. Fixes PR7419.
llvm-svn: 118211