Summary:
This change achieves two things:
- Redefine the Custom Event handling instrumentation points emitted by
the compiler to not require dynamic relocation of references to the
__xray_CustomEvent trampoline.
- Remove the synthetic reference we emit at the end of a function that
we used to keep auxiliary sections alive in favour of SHF_LINK_ORDER
associated with the section where the function is defined.
To achieve the custom event handling change, we've had to introduce the
concept of sled versioning -- this will need to be supported by the
runtime to allow us to understand how to turn on/off the new version of
the custom event handling sleds. That change has to land first before we
change the way we write the sleds.
To remove the synthetic reference, we rely on a relatively new linker
feature that preserves the sections that are associated with each other.
This allows us to limit the effects on the .text section of ELF
binaries.
Because we're still using absolute references that are resolved at
runtime for the instrumentation map (and function index) maps, we mark
these sections write-able. In the future we can re-define the entries in
the map to use relative relocations instead that can be statically
determined by the linker. That change will be a bit more invasive so we
defer this for later.
Depends on D36816.
Reviewers: dblaikie, echristo, pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D36615
llvm-svn: 311525
They won't affect the DWARF output, but they will mess with the
sorting of the fragments. This fixes the crash reported in PR34159.
https://bugs.llvm.org/show_bug.cgi?id=34159
llvm-svn: 311217
Previously we limited ourselves to only emitting nested classes, but we
need other kinds of types as well.
This fixes the Visual Studio STL visualizers, so that users can
visualize std::string and other objects.
llvm-svn: 310410
In the last half-dozen commits to LLVM I removed code that became dead
after removing the offset parameter from llvm.dbg.value gradually
proceeding from IR towards the backend. Before I can move on to
DwarfDebug and friends there is one last side-called offset I need to
remove: This patch modifies PrologEpilogInserter's use of the
DBG_VALUE's offset argument to use a DIExpression instead. Because the
PrologEpilogInserter runs at the Machine level I had to play a little
trick with a named llvm.dbg.mir node to get the DIExpressions to print
in MIR dumps (which print the llvm::Module followed by the
MachineFunction dump).
I also had to add rudimentary DwarfExpression support to CodeView and
as a side-effect also fixed a bug (CodeViewDebug::collectVariableInfo
was supposed to give up on variables with complex DIExpressions, but
would fail to do so for fragments, which are also modeled as
DIExpressions).
With this last holdover removed we will have only one canonical way of
representing offsets to debug locations which will simplify the code
in DwarfDebug (and future versions of CodeViewDebug once it starts
handling more complex expressions) and make it easier to reason about.
This patch is NFC-ish: All test case changes are for assembler
comments and the binary output does not change.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D36125
llvm-svn: 309751
Chromium's gold build seems to have trouble with this (gold produces
errors) - not sure if it's gold that's not coping with the valid
representation, or a bug in the implementation in LLVM, etc.
llvm-svn: 309630
When the first instruction of a basic block has no location (consider a
LEA materializing the address of an alloca for a call), we want to start
the line table for the block with the first valid source location in the
block. We need to ignore DBG_VALUE instructions during this scan to get
decent line tables.
llvm-svn: 309628
Missed the resetting base address selections when going from a base
address version to zero base address for non-base-addressed entries.
llvm-svn: 309529
(from comments in the test)
Group ranges in a range list that apply to the same section and use a base
address selection entry to reduce the number of relocations to one reloc per
section per range list. DWARF5 debug_rnglist will be more efficient than this
in terms of relocations, but it's still better than one reloc per entry in a
range list.
This is an object/executable size tradeoff - shrinking objects, but growing
the linked executable. In one large binary tested, total object size (not just
debug info) shrank by 16%, entirely relocation entries. Linked executable
grew by 4%. This was with compressed debug info in the objects, uncompressed
in the linked executable. Without compression in the objects, the win would be
smaller (the growth of debug_ranges itself would be more significant).
llvm-svn: 309526
This can come up in ThinLTO & wastes space & makes degenerate IR.
As per the added FIXME, ultimately, local imported entities should hang
off the function and that way the imported entity list on the CU can be
tested for emptiness like all the other CU lists.
(function-attached local imported entities are probably also the best
path forward for fixing how imported entities are handled both in
cross-module use (currently, while ThinLTO preserves the imported
entities, they would not get used at the imported inlined location -
only in the abstract origin that appears in the partial CU created by
the import (which isn't emitted under Fission due to cross-CU
limitations there)) and to reduce the number of points where imported
entities are emitted (they're currently emitted into every inlined
instance, concrete instance, and abstract origin - they should only go
in teh abstract origin if there is one, otherwise in the concrete
instance - but this requires lots of delayed handling and wiring up,
same as abstract variables & subprograms))
llvm-svn: 309354
Local imported entities at the top level of a subprogram were being
handled differently from those in nested scopes - that different
handling would cause pseudo concrete out-of-line definitions to be
created (but without any of their attributes, nor an abstract_origin) in
the case where there was no real concrete definition.
These local imported entities also only appeared in the concrete
definition where those imported entities in nested scopes appear in all
cases (abstract, concrete, and inlined). This change at least makes top
level case handle the same as the others - though there's a FIXME to
improve this to /only/ emit them into the abstract origin (though this
requires more plumbing - like the abstract subprogram and variable
handling that must defer population until the end of the unit to
discover if there is an abstract origin, or only a standalone concrete
definition).
llvm-svn: 309237
This is a better fix than r308708 for the problem introduced in
r304020. It restores the skeleton CU testcases modified by that commit
to their original form and most importantly ensures that
frontend-generated skeleton CUs (such as used to point to Clang
modules) come after the regular CUs. This broke for DICompileUnit
nodes that don't have any immediate children because they are now
constructed lazily instead of the order in which they are listed in
!llvm.dbg.cu. After this commit we still don't guarantee that order,
but we do guarantee that empty skeletons come last.
Shipping versions of LLDB are very sensitive to the ordering of
CUs. I'll track a fix for LLDB to be more permissive separately.
This fixes a test failure in the LLDB testsuite.
rdar://problem/33357252
llvm-svn: 309154
DIImportedEntity has a line number, but not a file field. To determine
the decl_line/decl_file we combine the line number from the
DIImportedEntity with the file from the DIImportedEntity's scope. This
does not work correctly when the parent scope is a DINamespace or a
DIModule, both of which do not have a source file.
This patch adds a file field to DIImportedEntity to unambiguously
identify the source location of the using/import declaration. Most
testcase updates are mechanical, the interesting one is the removal of
the FIXME in test/DebugInfo/Generic/namespace.ll.
This fixes PR33822. See https://bugs.llvm.org/show_bug.cgi?id=33822
for more context.
<rdar://problem/33357889>
https://bugs.llvm.org/show_bug.cgi?id=33822
Differential Revision: https://reviews.llvm.org/D35583
llvm-svn: 308398
If the instructions at the beginning of the block have no location,
we're better off using the location of the first instruction in the
current basic block. At the very least, that instruction post-dominates
this one, whereas if we don't emit a .cv_loc directive, we end up using
the potentially invalid location that falls through from the previous
block.
We could probably do better here by emitting some kind of ".cv_loc end"
directive that stops the line table entry of the previous .cv_loc
directive from bleeding out of its basic block. This would improve the
line table when an entire MBB has no valid location info.
llvm-svn: 306889
Summary:
When we're building with XRay instrumentation, we use a trick that
preserves references from the function to a function sled index. This
index table lives in a separate section, and without this trick the
linker is free to garbage-collect this section and all the segments it
refers to. Until we're able to tell the linkers to preserve these
sections, we use this reference trick to keep around both the index and
the entries in the instrumentation map.
Before this change we emitted both a synthetic reference to the label in
the instrumentation map, and to the entry in the function map index.
This change removes the first synthetic reference and only emits one
synthetic reference to the index -- the index entry has the references
to the labels in the instrumentation map, so the linker will still
preserve those if the function itself is preserved.
This reduces the amount of synthetic references we emit from 16 bytes to
just 8 bytes in x86_64, and similarly to other platforms.
Reviewers: dblaikie
Subscribers: javed.absar, kpw, pelikan, llvm-commits
Differential Revision: https://reviews.llvm.org/D34340
llvm-svn: 305880
The instruction it falls over on is an IMPLICT_DEF that also happens
to be the only instruction in its lexical scope. That LexicalScope has
never been created because its range is empty. This patch skips over
all meta-instructions instead of just DBG_VALUEs.
Thanks to David Blaikie for providing a testcase!
llvm-svn: 305853
For the following motivating example
bool c();
void f();
bool start() {
bool result = c();
if (!c()) {
result = false;
goto exit;
}
f();
result = true;
exit:
return result;
}
we would previously generate a single DW_AT_const_value(1) because
only the DBG_VALUE in the second-to-last basic block survived
codegen. This patch improves the heuristic used to determine when a
DBG_VALUE is available at the beginning of its variable's enclosing
lexical scope:
- Stop giving singular constants blanket permission to take over the
entire scope. There is still a special case for constants in the
function prologue that we also miight want to retire later.
- Use the lexical scope information to determine available-at-entry
instead of proximity to the function prologue.
After this patch we generate a location list with a more accurate
narrower availability for the constant true value. As a pleasant side
effect, we also generate inline locations instead of location lists
where a loacation covers the entire range of the enclosing lexical
scope.
Measured on compiling llc with four targets this doesn't have an
effect on compile time and reduces the size of the debug info for llc
by ~600K.
rdar://problem/30286912
llvm-svn: 305599
Summary:
This patch is part of 3 patches that together form a single patch, but must be introduced in stages in order not to break things.
The way that LLVM interprets DW_OP_plus in DIExpression nodes is basically that of the DW_OP_plus_uconst operator since LLVM expects an unsigned constant operand. This unnecessarily restricts the DW_OP_plus operator, preventing it from being used to describe the evaluation of runtime values on the expression stack. These patches try to align the semantics of DW_OP_plus and DW_OP_minus with that of the DWARF definition, which pops two elements off the expression stack, performs the operation and pushes the result back on the stack.
This is done in three stages:
• The first patch (LLVM) adds support for DW_OP_plus_uconst.
• The second patch (Clang) contains changes all its uses from DW_OP_plus to DW_OP_plus_uconst.
• The third patch (LLVM) changes the semantics of DW_OP_plus and DW_OP_minus to be in line with its DWARF meaning. This patch includes the bitcode upgrade from legacy DIExpressions.
Patch by Sander de Smalen.
Reviewers: echristo, pcc, aprantl
Reviewed By: aprantl
Subscribers: fhahn, javed.absar, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D33894
llvm-svn: 305386
Summary:
This patch is part of 3 patches that together form a single patch, but must be introduced in stages in order not to break things.
The way that LLVM interprets DW_OP_plus in DIExpression nodes is basically that of the DW_OP_plus_uconst operator since LLVM expects an unsigned constant operand. This unnecessarily restricts the DW_OP_plus operator, preventing it from being used to describe the evaluation of runtime values on the expression stack. These patches try to align the semantics of DW_OP_plus and DW_OP_minus with that of the DWARF definition, which pops two elements off the expression stack, performs the operation and pushes the result back on the stack.
This is done in three stages:
• The first patch (LLVM) adds support for DW_OP_plus_uconst.
• The second patch (Clang) contains changes all its uses from DW_OP_plus to DW_OP_plus_uconst.
• The third patch (LLVM) changes the semantics of DW_OP_plus and DW_OP_minus to be in line with its DWARF meaning. This patch includes the bitcode upgrade from legacy DIExpressions.
Patch by Sander de Smalen.
Reviewers: pcc, echristo, aprantl
Reviewed By: aprantl
Subscribers: fhahn, aprantl, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33892
llvm-svn: 305304
This fixes PR33157.
https://bugs.llvm.org//show_bug.cgi?id=33157
We might also think about disallowing duplicate dbg.declare intrinsics
entirely, but this may complicate some passes needlessly.
llvm-svn: 305244
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
The AArch64 backend marks calls that involve aggregate function
arguments as having an implicit def of SP. We already have the same
workaround in LiveDebugValues and in DbgValueHistoryCalculator for SP
clobbers in register masks. This adds register defs to the list.
Fixes rdar://problem/30361929 and Swift SR-3851.
llvm-svn: 304471
We should have a single call site entry with no landing pad. This
indicates that no EH action should be taken and the unwinder should
unwind to the next frame.
We currently don't recognize __gxx_personality_seh0 as a known
personality, so we forcibly emit a table, and that table was wrong. This
was filed as PR33220. Now we emit a correct table for that personality.
The next step is to recognize that we can completely skip the table for
this personality.
llvm-svn: 304363
This is really a workaround for ThinLTO in particular - since it can
import partial CUs that may end up looking very similar/the same as
the same partial import in another ThinLTO compile.
An alternative fix would be to change the DICompileUnit metadata to
include a "primary file" or the like - and when importing for ThinLTO
set the primary file to the name of the DICompileUnit that is being
imported into. This involves changing the schema and would reduce the
excessive uniqueness in the hash that this change creates - allowing
diagnosing of more duplicate CUs than will be caught with this change.
But duplicate CUs can still be caught in non-ThinLTO builds & are mostly
a nuisance rather than a particularly deliberate/effective tool for
finding broken code. (arguably the hash could always include the dwo
file and nothing in fission would break, I think..)
Reapply of r304119 after adding a triple to the test and moving it
to the X86 directory.
llvm-svn: 304130
When the only use of a CU is for a subprogram that's only emitted into
the using CU (to avoid cross-CU references in DWO files), avoid creating
that CU at all.
Reapply of r304111 after adding a triple to the test and moving it
to the X86 directory.
llvm-svn: 304129
This is really a workaround for ThinLTO in particular - since it can
import partial CUs that may end up looking very similar/the same as
the same partial import in another ThinLTO compile.
An alternative fix would be to change the DICompileUnit metadata to
include a "primary file" or the like - and when importing for ThinLTO
set the primary file to the name of the DICompileUnit that is being
imported into. This involves changing the schema and would reduce the
excessive uniqueness in the hash that this change creates - allowing
diagnosing of more duplicate CUs than will be caught with this change.
But duplicate CUs can still be caught in non-ThinLTO builds & are mostly
a nuisance rather than a particularly deliberate/effective tool for
finding broken code. (arguably the hash could always include the dwo
file and nothing in fission would break, I think..)
llvm-svn: 304119
When the only use of a CU is for a subprogram that's only emitted into
the using CU (to avoid cross-CU references in DWO files), avoid creating
that CU at all.
llvm-svn: 304111
Consistent with GCC and addresses a shortcoming with ThinLTO where many
imported CUs may end up being empty (because the functions imported from
them either ended up not being used (and were then discarded, since
they're imported as available_externally) or optimized away entirely).
Test cases previously testing empty CUs (either intentionally, or
because they didn't need anything more complicated) had a trivial 'int'
or similar basic type added to their retained types list.
This is a first order approximation - a deeper implementation could do
things like:
1) Be more lazy about construction of the CU - for example if two CUs
containing a single identical retained type are linked together, with
this change one of the two CUs will be produced but empty (since a
duplicate type won't be produced).
2) Go further and invert all the CU links the same way the subprogram
link is inverted - keep named CU lists of retained types, macros, etc,
and have those link back to the CU. Then if they're emitted, the CU is
emitted, but never otherwise - this would allow the metadata itself to
be dropped earlier too, though it seems unlikely that's an important
optimization as there shouldn't be many CUs relative to the number of
other entities.
llvm-svn: 304020
This produced 'strange' DWARF anyway - the CU would have no ranges (or
at least not a range including the inlined code) nor any subprogram or
inlined_subroutine - yet the line table would have entries for these
instructions.
(this actually becomes more relevant with changes coming after this,
where a CU without any contents will be omitted entirely - so there
would be no line table to put this on anyway)
llvm-svn: 304004
Previously this code was defensive to the situation in which the debug
info scopes would lead to a different subprogram from the subprogram in
the CU's subprogram list (this could've happened with linkonce
functions, etc as per the comment being removed). Since the CU<>SP link
reversal this is no longer possible.
llvm-svn: 303933
Previously, every time we wanted to serialize a field list record, we
would create a new copy of FieldListRecordBuilder, which would in turn
create a temporary instance of TypeSerializer, which itself had a
std::vector<> that was about 128K in size. So this 128K allocation was
happening every time. We can re-use the same instance over and over, we
just have to clear its internal hash table and seen records list between
each run. This saves us from the constant re-allocations.
This is worth an ~18.5% speed increase (3.75s -> 3.05s) in my tests.
Differential Revision: https://reviews.llvm.org/D33506
llvm-svn: 303919
Turns out gold doesn't use the DW_AT_GNU_pubnames to decide whether to
parse the rest of the DIEs when building gdb-index. This causes gold to
trip over LLVM's output when there are DW_FORM_ref_addr present.
Gold does use the presence of a debug_gnu_pub{names,types} entry for the
CU to skip parsing the debug_info portion, so make sure that's included
even when empty (technically, when empty there couldn't be any ref_addr
anyway - it only came up when gmlt didn't produce any (even non-empty)
pubnames - but given what that reveals about gold's implementation, this
seems like a good thing to do for consistency).
llvm-svn: 303894
MachineInstructions that don't generate any code (such as
IMPLICIT_DEFs) should not generate any debug info either.
Fixes PR33107.
https://bugs.llvm.org/show_bug.cgi?id=33107
This reapplies r303566 without any modifications. The stage2 build
failures persisted even after reverting this patch, and looking back
through history, it looks like these tests are flaky.
llvm-svn: 303575
MachineInstructions that don't generate any code (such as
IMPLICIT_DEFs) should not generate any debug info either.
Fixes PR33107.
https://bugs.llvm.org/show_bug.cgi?id=33107
llvm-svn: 303566
This was originally reverted because it was a breaking a bunch
of bots and the breakage was not surfacing on Windows. After much
head-scratching this was ultimately traced back to a bug in the
lit test runner related to its pipe handling. Now that the bug
in lit is fixed, Windows correctly reports these test failures,
and as such I have finally (hopefully) fixed all of them in this
patch.
llvm-svn: 303446
This is a squash of ~5 reverts of, well, pretty much everything
I did today. Something is seriously broken with lit on Windows
right now, and as a result assertions that fire in tests are
triggering failures. I've been breaking non-Windows bots all
day which has seriously confused me because all my tests have
been passing, and after running lit with -a to view the output
even on successful runs, I find out that the tool is crashing
and yet lit is still reporting it as a success!
At this point I don't even know where to start, so rather than
leave the tree broken for who knows how long, I will get this
back to green, and then once lit is fixed on Windows, hopefully
hopefully fix the remaining set of problems for real.
llvm-svn: 303409
Right now we have multiple notions of things that represent collections of
types. Most commonly used are TypeDatabase, which is supposed to keep
mappings from TypeIndex to type name when reading a type stream, which
happens when reading PDBs. And also TypeTableBuilder, which is used to
build up a collection of types dynamically which we will later serialize
(i.e. when writing PDBs).
But often you just want to do some operation on a collection of types, and
you may want to do the same operation on any kind of collection. For
example, you might want to merge two TypeTableBuilders or you might want
to merge two type streams that you loaded from various files.
This dichotomy between reading and writing is responsible for a lot of the
existing code duplication and overlapping responsibilities in the existing
CodeView library classes. For example, after building up a
TypeTableBuilder with a bunch of type records, if we want to dump it we
have to re-invent a bunch of extra glue because our dumper takes a
TypeDatabase or a CVTypeArray, which are both incompatible with
TypeTableBuilder.
This patch introduces an abstract base class called TypeCollection which
is shared between the various type collection like things. Wherever we
previously stored a TypeDatabase& in some common class, we now store a
TypeCollection&.
The advantage of this is that all the details of how the collection are
implemented, such as lazy deserialization of partial type streams, is
completely transparent and you can just treat any collection of types the
same regardless of where it came from.
Differential Revision: https://reviews.llvm.org/D33293
llvm-svn: 303388
There is often a lot of boilerplate code required to visit a type
record or type stream. The #1 use case is that you have a sequence
of bytes that represent one or more records, and you want to
deserialize each one, switch on it, and call a callback with the
deserialized record that the user can examine. Currently this
requires at least 6 lines of code:
codeview::TypeVisitorCallbackPipeline Pipeline;
Pipeline.addCallbackToPipeline(Deserializer);
Pipeline.addCallbackToPipeline(MyCallbacks);
codeview::CVTypeVisitor Visitor(Pipeline);
consumeError(Visitor.visitTypeRecord(Record));
With this patch, it becomes one line of code:
consumeError(codeview::visitTypeRecord(Record, MyCallbacks));
This is done by having the deserialization happen internally inside
of the visitTypeRecord function. Since this is occasionally not
desirable, the function provides a 3rd parameter that can be used
to change this behavior.
Hopefully this can significantly reduce the barrier to entry
to using the visitation infrastructure.
Differential Revision: https://reviews.llvm.org/D33245
llvm-svn: 303271
This function gives the wrong answer on some non-ELF platforms in some
cases. The function that does the right thing lives in Mangler.h. To try to
discourage people from using this function, give it a different name.
Differential Revision: https://reviews.llvm.org/D33162
llvm-svn: 303134
CodeViewDebug sets Asm to nullptr to disable debug info generation. You
can get a .ll file like no-cus.ll from 'clang -gcodeview -g0', which
happens in the ubsan test suite.
llvm-svn: 302923
Turns out that the Fission/Split DWARF package format (DWP) is currently
insufficient to handle cross-CU (ref_addr) references. So for now,
duplicate any debug info needed in these situations:
* inlined_subroutine's abstract_origin
* inlined variable's abstract_origin
* types
Keep the ref_addr behavior in general, including in the split DWARF
inline debug info that can be emitted into the object files for online
symbolication.
Keep a flag to use the old (ref_addr) behavior for testing ways of
addressing this limitation in the DWP tool (& for those not using DWP
packaging).
llvm-svn: 302858
Fixes inalloca parameters, which previously all pointed to the same
offset. Extend the test to use llvm-readobj so that we can test the
offset in a readable way.
llvm-svn: 302578
Most of the time we know exactly how many type records we
have in a list, and we want to use the visitor to deserialize
them into actual records in a database. Previously we were
just using push_back() every time without reserving the space
up front in the vector. This is obviously terrible from a
performance standpoint, and it's not uncommon to have PDB
files with half a million type records, where the performance
degredation was quite noticeable.
llvm-svn: 302302
This makes it simpler for the runtime to consistently handle the entries
in the function sled index in both 32 and 64 bit platforms where the
XRay runtime works.
Follow-up on D32693.
llvm-svn: 302111
Summary:
This change adds a new section to the xray-instrumented binary that
stores an index into ranges of the instrumentation map, where sleds
associated with the same function can be accessed as an array. At
runtime, we can get access to this index by function ID offset allowing
for selective patching and unpatching by function ID.
Each entry in this new section (xray_fn_idx) will include two pointers
indicating the start and one past the end of the sleds associated with
the same function. These entries will be 16 bytes long on x86 and
aarch64. On arm, we align to 16 bytes anyway so the runtime has to take
that into consideration.
__{start,stop}_xray_fn_idx will be the symbols that the runtime will
look for when we implement the selective patching/unpatching by function
id APIs. Because XRay synthesizes the function id's in a monotonically
increasing manner at runtime now, implementations (and users) can use
this table to look up the sleds associated with a specific function.
This is useful in implementations that want to do things like:
- Implement coverage mode for functions by patching everything
pre-main, then as functions are encountered, the installed handler
can unpatch the function that's been encountered after recording
that it's been called.
- Do "learning mode", so that the implementation can figure out some
statistical information about function calls by function id for a
time being, and then determine which functions are worth
uninstrumenting at runtime.
- Do "selective instrumentation" where an implementation can
specifically instrument only certain function id's at runtime
(either based on some external data, or through some other
heuristics) instead of patching all the instrumented functions at
runtime.
Reviewers: dblaikie, echristo, chandlerc, javed.absar
Subscribers: pelikan, aemerson, kpw, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D32693
llvm-svn: 302109
Compiler emitted synthetic types may not have an associated DIFile
(translation unit). In such a case, when generating CodeView debug type
information, we would attempt to compute an absolute filepath which
would result in a segfault due to a NULL DIFile*. If there is no source
file associated with the type, elide the type index entry for the type
and record the type information. This actually results in higher
fidelity debug information than clang/C2 as of this writing.
Resolves PR32668!
llvm-svn: 302085
Previously we wrote line information and file checksum
information, but we did not write information about inlinee
lines and functions. This patch adds support for that.
llvm-svn: 301936
Fixes the issue highlighted in
http://lists.llvm.org/pipermail/cfe-dev/2014-June/037500.html.
The DW_AT_decl_file and DW_AT_decl_line attributes on namespaces can
prevent LLVM from uniquing types that are in the same namespace. They
also don't carry any meaningful information.
rdar://problem/17484998
Differential Revision: https://reviews.llvm.org/D32648
llvm-svn: 301706
We have a lot of very similarly named classes related to
dealing with module debug info. This patch has NFC, it just
renames some classes to be more descriptive (albeit slightly
more to type). The mapping from old to new class names is as
follows:
Old | New
ModInfo | DbiModuleDescriptor
ModuleSubstream | ModuleDebugFragment
ModStream | ModuleDebugStream
With the corresponding Builder classes renamed accordingly.
Differential Revision: https://reviews.llvm.org/D32506
llvm-svn: 301555
DISubprogram currently has 10 pointer operands, several of which are
often nullptr. This patch reduces the amount of memory allocated by
DISubprogram by rearranging the operands such that containing type,
template params, and thrown types come last, and are only allocated
when they are non-null (or followed by non-null operands).
This patch also eliminates the entirely unused DisplayName operand.
This saves up to 4 pointer operands per DISubprogram. (I tried
measuring the effect on peak memory usage on an LTO link of an X86
llc, but the results were very noisy).
This reapplies r301498 with an attempted workaround for g++.
Differential Revision: https://reviews.llvm.org/D32560
llvm-svn: 301501
DISubprogram currently has 10 pointer operands, several of which are
often nullptr. This patch reduces the amount of memory allocated by
DISubprogram by rearranging the operands such that containing type,
template params, and thrown types come last, and are only allocated
when they are non-null (or followed by non-null operands).
This patch also eliminates the entirely unused DisplayName operand.
This saves up to 4 pointer operands per DISubprogram. (I tried
measuring the effect on peak memory usage on an LTO link of an X86
llc, but the results were very noisy).
llvm-svn: 301498
For Swift we would like to be able to encode the error types that a
function may throw, so the debugger can display them alongside the
function's return value when finish-ing a function.
DWARF defines DW_TAG_thrown_type (intended to be used for C++ throw()
declarations) that is a perfect fit for this purpose. This patch wires
up support for DW_TAG_thrown_type in LLVM by adding a list of thrown
types to DISubprogram.
To offset the cost of the extra pointer, there is a follow-up patch
that turns DISubprogram into a variable-length node.
rdar://problem/29481673
Differential Revision: https://reviews.llvm.org/D32559
llvm-svn: 301489
Summary: No test case since I'm not aware of an in-tree target that needs this.
Reviewers: hans
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32398
llvm-svn: 301311
1. RegisterClass::getSize() is split into two functions:
- TargetRegisterInfo::getRegSizeInBits(const TargetRegisterClass &RC) const;
- TargetRegisterInfo::getSpillSize(const TargetRegisterClass &RC) const;
2. RegisterClass::getAlignment() is replaced by:
- TargetRegisterInfo::getSpillAlignment(const TargetRegisterClass &RC) const;
This will allow making those values depend on subtarget features in the
future.
Differential Revision: https://reviews.llvm.org/D31783
llvm-svn: 301221
When functions are terminated by unreachable instructions, the last
instruction might trigger a CFI instruction to be generated. However,
emitting it would be be illegal since the function (and thus the FDE
the CFI is in) has already ended with the previous instruction.
Darwin's dwarfdump --verify --eh-frame complains about this and the
specification supports this.
Relevant bits from the DWARF 5 standard (6.4 Call Frame Information):
"[The] address_range [field in an FDE]: The number of bytes of
program instructions described by this entry."
"Row creation instructions: [...]
The new location value is always greater than the current one."
The first quotation implies that a CFI cannot describe a target
address outside of the enclosing FDE's range.
rdar://problem/26244988
Differential Revision: https://reviews.llvm.org/D32246
llvm-svn: 301219
In dwo files the fixed offset can be used - if the dwos are linked into
a dwp, the dwo consumer must use the dwp tables to find out where the
original range of the debug_info was and resolve the "section relative"
value relative to that original range - effectively
avoiding/reimplementing the relocation handling.
llvm-svn: 301072
Since Split DWARF needs to name the actual .dwo file that is generated,
it can't be known at the time the llvm::Module is produced as it may be
merged with other Modules before the object is generated and that object
may be generated with any name.
By passing the Split DWARF file name when LLVM is producing object code
the .dwo file name in the object file can match correctly.
The support for Split DWARF for implicit modules remains the same -
using metadata to store the dwo name and dwo id so that potentially
multiple skeleton CUs referring to different dwo files can be generated
from one llvm::Module.
llvm-svn: 301062
In addition to the original commit, tighten the condition for when to
pad empty functions to COFF Windows. This avoids running into problems
when targeting e.g. Win32 AMDGPU, which caused test failures when this
was committed initially.
llvm-svn: 301047
Empty functions can lead to duplicate entries in the Guard CF Function
Table of a binary due to multiple functions sharing the same RVA,
causing the kernel to refuse to load that binary.
We had a terrific bug due to this in Chromium.
It turns out we were already doing this for Mach-O in certain
situations. This patch expands the code for that in
AsmPrinter::EmitFunctionBody() and renames
TargetInstrInfo::getNoopForMachoTarget() to simply getNoop() since it
seems it was used for not just Mach-O anyway.
Differential Revision: https://reviews.llvm.org/D32330
llvm-svn: 301040
Associate the version-when-defined with definitions of standard DWARF
constants. Identify the "vendor" for DWARF extensions.
Use this information to verify FORMs in .debug_abbrev are defined as
of the DWARF version specified in the associated unit.
Removed two tests that had specified DWARF v1 (which essentially does
not exist).
Differential Revision: http://reviews.llvm.org/D30785
llvm-svn: 300875
- introduced in r300522 and found via the Swift LLDB testsuite.
The fix is to set the location kind to memory whenever an FrameIndex
location is emitted.
rdar://problem/31707602
llvm-svn: 300793
- introduced in r300522 and found via the Swift LLDB testsuite.
The fix is to set the location kind to memory whenever an FrameIndex
location is emitted.
rdar://problem/31707602
llvm-svn: 300790
This patch uses lshrInPlace to replace code where the object that lshr is called on is being overwritten with the result.
This adds an lshrInPlace(const APInt &) version as well.
Differential Revision: https://reviews.llvm.org/D32155
llvm-svn: 300566
The DWARF specification knows 3 kinds of non-empty simple location
descriptions:
1. Register location descriptions
- describe a variable in a register
- consist of only a DW_OP_reg
2. Memory location descriptions
- describe the address of a variable
3. Implicit location descriptions
- describe the value of a variable
- end with DW_OP_stack_value & friends
The existing DwarfExpression code is pretty much ignorant of these
restrictions. This used to not matter because we only emitted very
short expressions that we happened to get right by accident. This
patch makes DwarfExpression aware of the rules defined by the DWARF
standard and now chooses the right kind of location description for
each expression being emitted.
This would have been an NFC commit (for the existing testsuite) if not
for the way that clang describes captured block variables. Based on
how the previous code in LLVM emitted locations, DW_OP_deref
operations that should have come at the end of the expression are put
at its beginning. Fixing this means changing the semantics of
DIExpression, so this patch bumps the version number of DIExpression
and implements a bitcode upgrade.
There are two major changes in this patch:
I had to fix the semantics of dbg.declare for describing function
arguments. After this patch a dbg.declare always takes the *address*
of a variable as the first argument, even if the argument is not an
alloca.
When lowering a DBG_VALUE, the decision of whether to emit a register
location description or a memory location description depends on the
MachineLocation — register machine locations may get promoted to
memory locations based on their DIExpression. (Future) optimization
passes that want to salvage implicit debug location for variables may
do so by appending a DW_OP_stack_value. For example:
DBG_VALUE, [RBP-8] --> DW_OP_fbreg -8
DBG_VALUE, RAX --> DW_OP_reg0 +0
DBG_VALUE, RAX, DIExpression(DW_OP_deref) --> DW_OP_reg0 +0
All testcases that were modified were regenerated from clang. I also
added source-based testcases for each of these to the debuginfo-tests
repository over the last week to make sure that no synchronized bugs
slip in. The debuginfo-tests compile from source and run the debugger.
https://bugs.llvm.org/show_bug.cgi?id=32382
<rdar://problem/31205000>
Differential Revision: https://reviews.llvm.org/D31439
llvm-svn: 300522
If we have an array of a user-defined aggregates for which there was an
ODR violation, then the array size will not necessarily match the number
of elements times the size of the element.
Fixes PR32383
llvm-svn: 298750
It is not guaranteed that the memory used for MachineBasicBlocks in
the previous MachineFunction hasn't been freed, so holding on to a
pointer to the last function's isn't correct. Particularly I have
observed the sret.ll testcase failing because the first BasicBlock in
the new function happened to be allocated to the exact same memory as
the previously saved and (deleted) PrevInstBB.
llvm-svn: 298642
Also add an assertion for the case that there are multiple FI
expressions with a DW_OP_LLVM_fragment; which should violate internal
constraints in DbgVariable.
llvm-svn: 298518
If a register location can only be described by a complex expression
(i.e., multiple subregisters) it doesn't safely compose with another
complex expression. For example, it is not possible to apply a
DW_OP_deref operation to multiple DW_OP_pieces.
llvm-svn: 298472
until the rest of the expression is known.
This is still an NFC refactoring in preparation of a subsequent bugfix.
This reapplies r298388 with a bugfix for non-physical frame registers.
llvm-svn: 298471
If a register location can only be described by a complex expression
(i.e., multiple subregisters) it doesn't safely compose with another
complex expression. For example, it is not possible to apply a
DW_OP_deref operation to multiple DW_OP_pieces.
llvm-svn: 298389
In doing so, clean up the MD5 interface a little. Most
existing users only care about the lower 8 bytes of an MD5,
but for some users that care about the upper and lower,
there wasn't a good interface. Furthermore, consumers
of the MD5 checksum were required to handle endianness
details on their own, so it seems reasonable to abstract
this into a nicer interface that just gives you the right
value.
Differential Revision: https://reviews.llvm.org/D31105
llvm-svn: 298322
and mark the methods as protected.
Besides reducing the surface area of DwarfExpression, this is in
preparation for an upcoming bugfix in the DwarfExpression
implementation, for which it will be necessary to defer emitting
register operations until the rest of the expression is known.
NFC
llvm-svn: 298309
Move the check for "MF->hasWinCFI()" up into the calculation of the
shouldEmitMoves boolean, rather than putting it in the early returning
if. This ensures that endFunction doesn't try to emit .seh_* directives
for leaf functions.
llvm-svn: 298276
Citing http://bugs.llvm.org/show_bug.cgi?id=32288
The DWARF generated by LLVM includes this location:
0x55 0x93 0x04 DW_OP_reg5 DW_OP_piece(4) When GCC's DWARF is simply
0x55 (DW_OP_reg5) without the DW_OP_piece. I believe it's reasonable
to assume the DWARF consumer knows which part of a register
logically holds the value (low bytes, high bytes, how many bytes,
etc) for a primitive value like an integer.
This patch gets rid of the redundant DW_OP_piece when a subregister is
at offset 0. It also adds previously missing subregister masking when
a subregister is followed by another operation.
(This reapplies r297960 with two additional testcase updates).
rdar://problem/31069390
https://reviews.llvm.org/D31010
llvm-svn: 297965
Citing http://bugs.llvm.org/show_bug.cgi?id=32288
The DWARF generated by LLVM includes this location:
0x55 0x93 0x04 DW_OP_reg5 DW_OP_piece(4) When GCC's DWARF is simply
0x55 (DW_OP_reg5) without the DW_OP_piece. I believe it's reasonable
to assume the DWARF consumer knows which part of a register
logically holds the value (low bytes, high bytes, how many bytes,
etc) for a primitive value like an integer.
This patch gets rid of the redundant DW_OP_piece when a subregister is
at offset 0. It also adds previously missing subregister masking when
a subregister is followed by another operation.
rdar://problem/31069390
https://reviews.llvm.org/D31010
llvm-svn: 297960
Using the module ID here is wrong for a couple of reasons:
1) The module ID is not persisted, so we can end up with different
object file contents given the same input file (for example if the same
file is accessed via different paths).
2) With ThinLTO the module ID field may contain the path to a bitcode file,
which is incorrect, as the .file argument is supposed to contain the path to
a source file.
Differential Revision: https://reviews.llvm.org/D30584
llvm-svn: 297853
On MachO platforms that use subsections-via-symbols dead code stripping will
drop prefix data. Unfortunately there is no great way to convey the relationship
between a function and its prefix data to the linker. We are forced to use a bit
of a hack: we give the prefix data it’s own symbol, and mark the actual function
entry an .alt_entry.
Patch by Moritz Angermann!
Differential Revision: https://reviews.llvm.org/D30770
llvm-svn: 297804
This reverts commit r242302. External type refs of this form were
never used by any LLVM frontend so this is effectively dead code.
(They were introduced to support clang module debug info, but in the
end we came up with a better design that doesn't use this feature at
all.)
rdar://problem/25897929
Differential Revision: https://reviews.llvm.org/D30917
llvm-svn: 297684
Some late additions to DWARF v5 were not in Dwarf.def; also one form
was redefined. Add the new cases to relevant switches in different
parts of LLVM. Replace DW_FORM_ref_sup with DW_FORM_ref_sup[4,8].
I did not add support for DW_FORM_strx3/addrx3 other that defining the
constants. We don't have any infrastructure to support these.
Differential Revision: http://reviews.llvm.org/D30664
llvm-svn: 297085
Summary:
Functions with the "xray-log-args" attribute will have a special XRay sled kind
emitted, for compiler-rt to copy any call arguments to your logging handler.
For practical and performance reasons, only the first argument is supported, and
only up to 64 bits.
Reviewers: dberris
Reviewed By: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29702
llvm-svn: 296998
After several smaller patches to get most of the core improvements
finished up, this patch is a straight move and header fixup of
the source.
Differential Revision: https://reviews.llvm.org/D30266
llvm-svn: 296810
Take DW_FORM_implicit_const attribute value into account when profiling
DIEAbbrevData.
Currently if we have two similar types with implicit_const attributes and
different values we end up with only one abbrev in .debug_abbrev section.
For example consider two structures: S1 with implicit_const attribute ATTR
and value VAL1 and S2 with implicit_const ATTR and value VAL2.
The .debug_abbrev section will contain only 1 related record:
[N] DW_TAG_structure_type DW_CHILDREN_yes
DW_AT_ATTR DW_FORM_implicit_const VAL1
// ....
This is incorrect as struct S2 (with VAL2) will use abbrev record with VAL1.
With this patch we will have two different abbreviations here:
[N] DW_TAG_structure_type DW_CHILDREN_yes
DW_AT_ATTR DW_FORM_implicit_const VAL1
// ....
[M] DW_TAG_structure_type DW_CHILDREN_yes
DW_AT_ATTR DW_FORM_implicit_const VAL2
// ....
llvm-svn: 296691
Summary:
Avoids tons of prologue boilerplate when arguments are passed in memory
and left in memory. This can happen in a debug build or in a release
build when an argument alloca is escaped. This will dramatically affect
the code size of x86 debug builds, because X86 fast isel doesn't handle
arguments passed in memory at all. It only handles the x86_64 case of up
to 6 basic register parameters.
This is implemented by analyzing the entry block before ISel to identify
copy elision candidates. A copy elision candidate is an argument that is
used to fully initialize an alloca before any other possibly escaping
uses of that alloca. If an argument is a copy elision candidate, we set
a flag on the InputArg. If the the target generates loads from a fixed
stack object that matches the size and alignment requirements of the
alloca, the SelectionDAG builder will delete the stack object created
for the alloca and replace it with the fixed stack object. The load is
left behind to satisfy any remaining uses of the argument value. The
store is now dead and is therefore elided. The fixed stack object is
also marked as mutable, as it may now be modified by the user, and it
would be invalid to rematerialize the initial load from it.
Supersedes D28388
Fixes PR26328
Reviewers: chandlerc, MatzeB, qcolombet, inglorion, hans
Subscribers: igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D29668
llvm-svn: 296683
DWARF may define a default lower-bound for arrays in languages defined
in a particular DWARF version. But the logic to suppress an
unnecessary lower-bound attribute was looking at the hard-coded
default DWARF version, not the version that had been requested.
Also updated the list with all languages defined in DWARF v5.
Differential Revision: http://reviews.llvm.org/D30484
llvm-svn: 296652
Requesting DWARF v5 will now get you the new compile-unit and
type-unit headers. llvm-dwarfdump will also recognize them.
Differential Revision: http://reviews.llvm.org/D30206
llvm-svn: 296514
Before the endianness was specified on each call to read
or write of the StreamReader / StreamWriter, but in practice
it's extremely rare for streams to have data encoded in
multiple different endiannesses, so we should optimize for the
99% use case.
This makes the code cleaner and more general, but otherwise
has NFC.
llvm-svn: 296415
This was reverted because it was breaking some builds, and
because of incorrect error code usage. Since the CL was
large and contained many different things, I'm resubmitting
it in pieces.
This portion is NFC, and consists of:
1) Renaming classes to follow a consistent naming convention.
2) Fixing the const-ness of the interface methods.
3) Adding detailed doxygen comments.
4) Fixing a few instances of passing `const BinaryStream& X`. These
are now passed as `BinaryStreamRef X`.
llvm-svn: 296394
r296215, "[PDB] General improvements to Stream library."
r296217, "Disable BinaryStreamTest.StreamReaderObject temporarily."
r296220, "Re-enable BinaryStreamTest.StreamReaderObject."
r296244, "[PDB] Disable some tests that are breaking bots."
r296249, "Add static_cast to silence -Wc++11-narrowing."
std::errc::no_buffer_space should be used for OS-oriented errors for socket transmission.
(Seek discussions around llvm/xray.)
I could substitute s/no_buffer_space/others/g, but I revert whole them ATM.
Could we define and use LLVM errors there?
llvm-svn: 296258
This adds various new functionality and cleanup surrounding the
use of the Stream library. Major changes include:
* Renaming of all classes for more consistency / meaningfulness
* Addition of some new methods for reading multiple values at once.
* Full suite of unit tests for reader / writer functionality.
* Full set of doxygen comments for all classes.
* Streams now store their own endianness.
* Fixed some bugs in a few of the classes that were discovered
by the unit tests.
llvm-svn: 296215
This is part of a larger effort to get the Stream code moved
up to Support. I don't want to do it in one large patch, in
part because the changes are so big that it will treat everything
as file deletions and add, losing history in the process.
Aside from that though, it's just a good idea in general to
make small changes.
So this change only changes the names of the Stream related
source files, and applies necessary source fix ups.
llvm-svn: 296211
This fixes PR31381, which caused an assertion and/or invalid debug info.
This affects debug variables that have multiple fragments in the MMI
side (i.e.: in the stack frame) table.
rdar://problem/30571676
llvm-svn: 295486
Summary:
Keep a vector of LocInfos around; one for each call to EmitInlineAsm.
Since each call to EmitInlineAsm creates a new buffer in the inline asm
SourceMgr, we can use the buffer number to map to the right LocInfo.
Reviewers: rengolin, grosbach, rnk, echristo
Reviewed By: rnk
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D29769
llvm-svn: 294947
Fixed test.
Summary:
Enables source location in diagnostic messages from the backend. This
is after parsing, during finalization. This requires the SourceMgr, the
inline assembly string buffer, and DiagInfo to still be alive after
EmitInlineAsm returns.
This patch creates a single SourceMgr for inline assembly inside the
AsmPrinter. MCContext gets a pointer to this SourceMgr. Using one
SourceMgr per call to EmitInlineAsm would make it difficult for
MCContext to figure out in which SourceMgr the SMLoc is located, while a
single SourceMgr can figure it out if it has multiple buffers.
The Str argument to EmitInlineAsm is copied into a buffer and owned by
the inline asm SourceMgr. This ensures that DiagHandlers won't print
garbage. (Clang emits a "note: instantiated into assembly here", which
refers to this string.)
The AsmParser gets destroyed before finalization, which means that the
DiagHandlers the AsmParser installs into the SourceMgr will be stale.
Restore the saved DiagHandlers.
Since now we're using just one SourceMgr for multiple inline asm
strings, we need to tell the AsmParser which buffer it needs to parse
currently. Hand a buffer id -- returned from SourceMgr::
AddNewSourceBuffer -- to the AsmParser.
Reviewers: rnk, grosbach, compnerd, rengolin, rovka, anemet
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29441
llvm-svn: 294458
Summary:
Enables source location in diagnostic messages from the backend. This
is after parsing, during finalization. This requires the SourceMgr, the
inline assembly string buffer, and DiagInfo to still be alive after
EmitInlineAsm returns.
This patch creates a single SourceMgr for inline assembly inside the
AsmPrinter. MCContext gets a pointer to this SourceMgr. Using one
SourceMgr per call to EmitInlineAsm would make it difficult for
MCContext to figure out in which SourceMgr the SMLoc is located, while a
single SourceMgr can figure it out if it has multiple buffers.
The Str argument to EmitInlineAsm is copied into a buffer and owned by
the inline asm SourceMgr. This ensures that DiagHandlers won't print
garbage. (Clang emits a "note: instantiated into assembly here", which
refers to this string.)
The AsmParser gets destroyed before finalization, which means that the
DiagHandlers the AsmParser installs into the SourceMgr will be stale.
Restore the saved DiagHandlers.
Since now we're using just one SourceMgr for multiple inline asm
strings, we need to tell the AsmParser which buffer it needs to parse
currently. Hand a buffer id -- returned from SourceMgr::
AddNewSourceBuffer -- to the AsmParser.
Reviewers: rnk, grosbach, compnerd, rengolin, rovka, anemet
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29441
llvm-svn: 294433
While looking to add support for placing singular types (types that will
only be emitted in one place (such as attached to a strong vtable or
explicit template instantiation definition)) not in type units (since
type units have overhead) I stumbled across that change causing an
increase in pubtypes.
Turns out we were missing some types from type units if they were only
referenced from other type units and not from the debug_info section.
This fixes that, following GCC's line of describing the offset of such
entities as the CU die (since there's no compile unit-relative offset
that would describe such an entity - they aren't in the CU). Also like
GCC, this change prefers to describe the type stub within the CU rather
than the "just use the CU offset" fallback where possible. This may give
the DWARF consumer some opportunity to find the extra info in the type
stub - though I'm not sure GDB does anything with this currently.
The size of the pubnames/pubtypes sections now match exactly with or
without type units enabled.
This nearly triples (+189%) the pubtypes section for a clang self-host
and grows pubnames by 0.07% (without compression). For a total of 8%
increase in debug info sections of the objects of a Split DWARF build
when using type units.
llvm-svn: 293971
LTO. Replace it with a related assertion, ensuring that abstract
variables appear only in abstract scopes.
Part of PR31437.
Differential Revision: http://reviews.llvm.org/D29430
llvm-svn: 293841
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359
This patch fixes debug information for __thread variable on Mips
using .dtprelword and .dtpreldword directives.
Patch by Aleksandar Beserminji.
Differential Revision: http://reviews.llvm.org/D28770
llvm-svn: 292624
Non-prevailing weak/linkonce odr symbols will be dropped by ThinLTO to
available_externally when possible. If they had an initializer in the
global_ctors list, a comdat group was being created. This code
already had logic to skip available_externally defs, but now the
EliminateAvailableExternally pass will drop these symbols to
declarations earlier. Change the check to skip all declarations for
linker (which includes available_externally along with declarations).
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28737
llvm-svn: 292408
Previously the type dumper itself was passed around to a lot of different
places and manipulated in ways that were more appropriate on the type
database. For example, the entire TypeDumper was passed into the symbol
dumper, when all the symbol dumper wanted to do was lookup the name of a
TypeIndex so it could print it. That's what the TypeDatabase is for --
mapping type indices to names.
Another example is how if the user runs llvm-pdbdump with the option to
dump symbols but not types, we still have to visit all types so that we
can print minimal information about the type of a symbol, but just without
dumping full symbol records. The way we did this before is by hacking it
up so that we run everything through the type dumper with a null printer,
so that the output goes to /dev/null. But really, we don't need to dump
anything, all we want to do is build the type database. Since
TypeDatabaseVisitor now exists independently of TypeDumper, we can do
this. We just build a custom visitor callback pipeline that includes a
database visitor but not a dumper.
All the hackery around printers etc goes away. After this patch, we could
probably even delete the entire CVTypeDumper class since really all it is
at this point is a thin wrapper that hides the details of how to build a
useful visitation pipeline. It's not a priority though, so CVTypeDumper
remains for now.
After this patch we will be able to easily plug in a different style of
type dumper by only implementing the proper visitation methods to dump
one-line output and then sticking it on the pipeline.
Differential Revision: https://reviews.llvm.org/D28524
llvm-svn: 291724
We were starting to get some name clashes between llvm-pdbdump
and the common CodeView framework, so I took this opportunity
to rename a bunch of files to more accurately describe their
usage. This also helps in llvm-pdbdump to distinguish
between different files and whether they are used for pretty
dump mode or raw dump mode.
llvm-svn: 291627
This creates a centralized class in which to store type records.
It stores types as an array of entries, which matches the
notion of a type stream being a topologically sorted DAG.
Logic to build up such a database was already being used in
CVTypeDumper, so CVTypeDumper is now updated to to read from
a TypeDatabase which is filled out by an earlier visitor in
the pipeline.
Differential Revision: https://reviews.llvm.org/D28486
llvm-svn: 291626
Support for DW_FORM_implicit_const DWARFv5 feature.
When this form is used attribute value goes to .debug_abbrev section (as SLEB).
As this form would break any debug tool which doesn't support DWARFv5
it is guarded by dwarf version check. Attempt to use this form with
dwarf version <= 4 is considered a fatal error.
Differential Revision: https://reviews.llvm.org/D28456
llvm-svn: 291599
Summary:
No need to have this per-architecture. While there, unify 32-bit ARM's
behaviour with what changed elsewhere and start function names lowercase
as per the coding standards. Individual entry emission code goes to the
entry's own class.
Fully tested on amd64, cross-builds on both ARMs and PowerPC.
Reviewers: dberris
Subscribers: aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D28209
llvm-svn: 290858
GNU as rejects input where .cfi_sections is used after .cfi_startproc,
if the new section differs from the old. Adjust our output to always
emit .cfi_sections before the first .cfi_startproc to minimize necessary
code.
Differential Revision: https://reviews.llvm.org/D28011
llvm-svn: 290817
Jump table emission can switch to .rdata before
WinException::endFunction gets called. Just remember the appropriate
text section we started in and reset back to it when we end the
function. We were already switching sections back from .xdata anyway.
Fixes the first problem in PR31488, so that now COFF switch tables can
live in .rdata if we want them to.
llvm-svn: 290678
When DwarfExpression is emitting a fragment that is located in a
register and that fragment is smaller than the register, and the
register must be composed from sub-registers (are you still with me?)
the last DW_OP_piece operation must not be larger than the size of the
fragment itself, since the last piece of the fragment could be smaller
than the last subregister that is being emitted.
rdar://problem/29779065
llvm-svn: 290324
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades and a change
to the Bitcode record for DIGlobalVariable, that makes upgrading the
old format unambiguous also for variables without DIExpressions.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 290153
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).
Sorry for the churn!
llvm-svn: 289982
This is the 3rd of 3 patches to get reading and writing of
CodeView symbol and type records to use a single codepath.
Differential Revision: https://reviews.llvm.org/D26427
llvm-svn: 289978
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289920
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289902
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
Follow-up to r289256, address a FIXME to avoid resetting the column
number. This reduced .debug_line by 2.6% in a RelWithDebInfo
self-build of clang.
llvm-svn: 289620
DWARF specifies that "line 0" really means "no appropriate source
location" in the line table. By default, use this for branch targets
and some other cases that have no specified source location, to
prevent inheriting unfortunate line numbers from physically preceding
instructions (which might be from completely unrelated source).
Updated patch allows enabling or suppressing this behavior for all
unspecified source locations.
Differential Revision: http://reviews.llvm.org/D24180
llvm-svn: 289468
LLVM's use of DW_OP_bit_piece is incorrect and a based on a
misunderstanding of the wording in the DWARF specification. The offset
argument of DW_OP_bit_piece refers to the offset into the location
that is on the top of the DWARF expression stack, and not an offset
into the source variable. This has since also been clarified in the
DWARF specification.
This patch fixes all uses of DW_OP_bit_piece to emit the correct
offset and simplifies the DwarfExpression class to semi-automaticaly
emit empty DW_OP_pieces to adjust the offset of the source variable,
thus simplifying the code using DwarfExpression.
While this is an incompatible bugfix, in practice I don't expect this
to be much of a problem since LLVM's old interpretation and the
correct interpretation of DW_OP_bit_piece differ only when there are
gaps in the fragmented locations of the described variables or if
individual fragments are smaller than a byte. LLDB at least won't
interpret locations with gaps in them because is has no way to present
undefined bits in a variable, and there is a high probability that an
old-form expression will be malformed when interpreted correctly,
because the DW_OP_bit_piece offset will be outside of the location at
the top of the stack.
As a nice side-effect, this patch enables us to use a more efficient
encoding for subregisters: In order to express a sub-register at a
non-zero offset we now use a DW_OP_bit_piece instead of shifting the
value into place manually.
This patch also adds missing test coverage for code paths that weren't
exercised before.
<rdar://problem/29335809>
Differential Revision: https://reviews.llvm.org/D27550
llvm-svn: 289266
Like DBG_VALUE, these emit nothing to the .text section, and sometimes
have no source location specified. Just ignore them.
Differential Revision: http://reviews.llvm.org/D27492
llvm-svn: 289256
We were falsely claiming that we had an LSDA for the relevant EH
personality before this change, which could lead to the EH machinery
interpreting random adjacent data as an LSDA.
Fixes PR31317
This change is safe because cleanups can't contain exception handlers
today. We do these things to maintain that invariant:
- C++ destructors are naturally out-of-line
- __finally blocks are outlined in clang
- LLVM's inliner will not inline EH constructs into cleanups
llvm-svn: 289101
The relocations for `DIEEntry::EmitValue` were wrong for Win64
(emitting FK_Data_4 instead of FK_SecRel_4). This corrects that
oversight so that the DWARF data is correct in Win64 COFF files.
Fixes PR15393.
Patch by Jameson Nash <jameson@juliacomputing.com> based on a patch
by David Majnemer.
Differential Revision: https://reviews.llvm.org/D21731
llvm-svn: 289013
The only tests we have for the DWARF parser are the tests that use llvm-dwarfdump and expect output from textual dumps.
More DWARF parser modification are coming in the next few weeks and I wanted to add tests that can verify that we can encode and decode all form types, as well as test some other basic DWARF APIs where we ask DIE objects for their children and siblings.
DwarfGenerator.cpp was added in the lib/CodeGen directory. This file contains the code necessary to easily create DWARF for tests:
dwarfgen::Generator DG;
Triple Triple("x86_64--");
bool success = DG.init(Triple, Version);
if (!success)
return;
dwarfgen::CompileUnit &CU = DG.addCompileUnit();
dwarfgen::DIE CUDie = CU.getUnitDIE();
CUDie.addAttribute(DW_AT_name, DW_FORM_strp, "/tmp/main.c");
CUDie.addAttribute(DW_AT_language, DW_FORM_data2, DW_LANG_C);
dwarfgen::DIE SubprogramDie = CUDie.addChild(DW_TAG_subprogram);
SubprogramDie.addAttribute(DW_AT_name, DW_FORM_strp, "main");
SubprogramDie.addAttribute(DW_AT_low_pc, DW_FORM_addr, 0x1000U);
SubprogramDie.addAttribute(DW_AT_high_pc, DW_FORM_addr, 0x2000U);
dwarfgen::DIE IntDie = CUDie.addChild(DW_TAG_base_type);
IntDie.addAttribute(DW_AT_name, DW_FORM_strp, "int");
IntDie.addAttribute(DW_AT_encoding, DW_FORM_data1, DW_ATE_signed);
IntDie.addAttribute(DW_AT_byte_size, DW_FORM_data1, 4);
dwarfgen::DIE ArgcDie = SubprogramDie.addChild(DW_TAG_formal_parameter);
ArgcDie.addAttribute(DW_AT_name, DW_FORM_strp, "argc");
// ArgcDie.addAttribute(DW_AT_type, DW_FORM_ref4, IntDie);
ArgcDie.addAttribute(DW_AT_type, DW_FORM_ref_addr, IntDie);
StringRef FileBytes = DG.generate();
MemoryBufferRef FileBuffer(FileBytes, "dwarf");
auto Obj = object::ObjectFile::createObjectFile(FileBuffer);
EXPECT_TRUE((bool)Obj);
DWARFContextInMemory DwarfContext(*Obj.get());
This code is backed by the AsmPrinter code that emits DWARF for the actual compiler.
While adding unit tests it was discovered that DIEValue that used DIEEntry as their values had bugs where DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref8, and DW_FORM_ref_udata forms were not supported. These are all now supported. Added support for DW_FORM_string so we can emit inlined C strings.
Centralized the code to unique abbreviations into a new DIEAbbrevSet class and made both the dwarfgen::Generator and the llvm::DwarfFile classes use the new class.
Fixed comments in the llvm::DIE class so that the Offset is known to be the compile/type unit offset.
DIEInteger now supports more DW_FORM values.
There are also unit tests that cover:
Encoding and decoding all form types and values
Encoding and decoding all reference types (DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8, DW_FORM_ref_udata, DW_FORM_ref_addr) including cross compile unit references with that go forward one compile unit and backward on compile unit.
Differential Revision: https://reviews.llvm.org/D27326
llvm-svn: 289010
so we can stop using DW_OP_bit_piece with the wrong semantics.
The entire back story can be found here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161114/405934.html
The gist is that in LLVM we've been misinterpreting DW_OP_bit_piece's
offset field to mean the offset into the source variable rather than
the offset into the location at the top the DWARF expression stack. In
order to be able to fix this in a subsequent patch, this patch
introduces a dedicated DW_OP_LLVM_fragment operation with the
semantics that we used to apply to DW_OP_bit_piece, which is what we
actually need while inside of LLVM. This patch is complete with a
bitcode upgrade for expressions using the old format. It does not yet
fix the DWARF backend to use DW_OP_bit_piece correctly.
Implementation note: We discussed several options for implementing
this, including reserving a dedicated field in DIExpression for the
fragment size and offset, but using an custom operator at the end of
the expression works just fine and is more efficient because we then
only pay for it when we need it.
Differential Revision: https://reviews.llvm.org/D27361
rdar://problem/29335809
llvm-svn: 288683
In r266692, we made it possible to emit linkage names for just inlined
functions, putting the attribute on the abstract origin. Make sure we
don't think the linkage-name was already emitted on a declaration.
Differential Revision: http://reviews.llvm.org/D27320
llvm-svn: 288450
Move the cast<MCSymbolELF> inside emitELFSize, so that:
- it's done in one place instead of at each call
- it's more consistent with similar functions like EmitCOFFSafeSEH
- ambiguity between cast<> and dyn_cast<> is avoided (which also
eliminates an unnecessary dyn_cast call)
This also makes it easier to experiment with using ".size" directives on
non-ELF targets.
llvm-svn: 288437
Recommitting r288293 with some extra fixes for GlobalISel code.
Most of the exception handling members in MachineModuleInfo is actually
per function data (talks about the "current function") so it is better
to keep it at the function instead of the module.
This is a necessary step to have machine module passes work properly.
Also:
- Rename TidyLandingPads() to tidyLandingPads()
- Use doxygen member groups instead of "//===- EH ---"... so it is clear
where a group ends.
- I had to add an ugly const_cast at two places in the AsmPrinter
because the available MachineFunction pointers are const, but the code
wants to call tidyLandingPads() in between
(markFunctionEnd()/endFunction()).
Differential Revision: https://reviews.llvm.org/D27227
llvm-svn: 288405
The DIEUnit class represents a compile or type unit and it owns the unit DIE as an instance variable. This allows anyone with a DIE, to get the unit DIE, and then get back to its DIEUnit without adding any new ivars to the DIE class. Why was this needed? The DIE class has an Offset that is always the CU relative DIE offset, not the "offset in debug info section" as was commented in the header file (the comment has been corrected). This is great for performance because most DIE references are compile unit relative and this means most code that accessed the DIE's offset didn't need to make it into a compile unit relative offset because it already was. When we needed to emit a DW_FORM_ref_addr though, we needed to find the absolute offset of the DIE by finding the DIE's compile/type unit. This class did have the absolute debug info/type offset and could be added to the CU relative offset to compute the absolute offset. With this change we can easily get back to a DIE's DIEUnit which will have this needed offset. Prior to this is required having a DwarfDebug and required calling:
DwarfCompileUnit *DwarfDebug::lookupUnit(const DIE *CU) const;
Now we can use the DIEUnit class to do so without needing DwarfDebug. All clients now use DIEUnit objects (the DwarfDebug stack and the DwarfLinker). A follow on patch for the DWARF generator will also take advantage of this.
Differential Revision: https://reviews.llvm.org/D27170
llvm-svn: 288399
Most of the exception handling members in MachineModuleInfo is actually
per function data (talks about the "current function") so it is better
to keep it at the function instead of the module.
This is a necessary step to have machine module passes work properly.
Also:
- Rename TidyLandingPads() to tidyLandingPads()
- Use doxygen member groups instead of "//===- EH ---"... so it is clear
where a group ends.
- I had to add an ugly const_cast at two places in the AsmPrinter
because the available MachineFunction pointers are const, but the code
wants to call tidyLandingPads() in between
(markFunctionEnd()/endFunction()).
Differential Revision: https://reviews.llvm.org/D27227
llvm-svn: 288293
VariableDbgInfo is per function data, so it makes sense to have it with
the function instead of the module.
This is a necessary step to have machine module passes work properly.
Differential Revision: https://reviews.llvm.org/D27186
llvm-svn: 288292
This is per function data so it is better kept at the function instead
of the module.
This is a necessary step to have machine module passes work properly.
Differential Revision: https://reviews.llvm.org/D27185
llvm-svn: 288291
The LLDB tests are now ready for this patch.
DWARF specifies that "line 0" really means "no appropriate source
location" in the line table. Use this for branch targets and some
other cases that have no specified source location, to prevent
inheriting unfortunate line numbers from physically preceding
instructions (which might be from completely unrelated source).
Differential Revision: http://reviews.llvm.org/D24180
llvm-svn: 288283
DWARF specifies that "line 0" really means "no appropriate source
location" in the line table. Use this for branch targets and some
other cases that have no specified source location, to prevent
inheriting unfortunate line numbers from physically preceding
instructions (which might be from completely unrelated source).
Differential Revision: http://reviews.llvm.org/D24180
llvm-svn: 288212
It looks like this logic was duplicated long ago and the GCC side of
things has grown additional functionality. We need ${:uid} at least to
generate unique MS inline asm labels (PR23715), so expose these.
llvm-svn: 288092
This patch makes AsmPrinter less reliant on DwarfDebug by relying on the DWARF version in the AsmPrinter's MCStreamer's MCContext. This allows us to remove the redundant DWARF version from DwarfDebug. It also lets us change code that used to access the AsmPrinter's DwarfDebug just to get to the DWARF version by changing the DWARF version accessor on AsmPrinter so that it grabs the version from its MCStreamer's MCContext.
Differential Revision: https://reviews.llvm.org/D27032
llvm-svn: 287839
No-one actually had a mangler handy when calling this function, and
getSymbol itself went most of the way towards getting its own mangler
(with a local TLOF variable) so forcing all callers to supply one was
just extra complication.
llvm-svn: 287645
Enable codeview emission for windows-itanium targets. Co-opt an existing
test (which is derived from a C source file and should therefore be
identical across the Itanium and MS ABIs).
Differential Revision: https://reviews.llvm.org/D26693
llvm-svn: 287567
The previously used "names" are rather descriptions (they use multiple
words and contain spaces), use short programming language identifier
like strings for the "names" which should be used when exporting to
machine parseable formats.
Also removed a unused TimerGroup from Hexxagon.
Differential Revision: https://reviews.llvm.org/D25583
llvm-svn: 287369
This patch updates a bunch of places where add_dependencies was being explicitly called to add dependencies on intrinsics_gen to instead use the DEPENDS named parameter. This cleanup is needed for a patch I'm working on to add a dependency debugging mode to the build system.
llvm-svn: 287206
Previously support had been added for using CodeViewRecordIO
to read (deserialize) CodeView type records. This patch adds
support for writing those same records. With this patch,
reading and writing of CodeView type records finally uses a single
codepath.
Differential Revision: https://reviews.llvm.org/D26253
llvm-svn: 286304
if it is more specific than the one in its DW_AT_specification.
If a static member is an array, the translation unit containing the
member definition may have a more specific type (including its length)
than TUs only seeing the class declaration. This patch adds a
DW_AT_type to the member's DW_TAG_variable in addition to the
DW_AT_specification in these cases. The member type in the
DW_AT_specification still shows the more generic type (without the
length) to avoid defeating type uniquing.
The DWARF standard discourages “duplicating” a DW_AT_type in a member
variable definition but doesn’t explicitly forbid it. Having the more
specific type (with the array length) available is what allows the
debugger to print the contents of a static array member variable.
https://reviews.llvm.org/D26368
rdar://problem/28706946
llvm-svn: 286302
Using a pattern similar to that of YamlIO, this allows
us to have a single codepath for translating codeview
records to and from serialized byte streams. The
current patch only hooks this up to the reading of
CodeView type records. A subsequent patch will hook
it up for writing of CodeView type records, and then a
third patch will hook up the reading and writing of
CodeView symbols.
Differential Revision: https://reviews.llvm.org/D26040
llvm-svn: 285836
DW_TAG_atomic_type was already included in Dwarf.defs and emitted correctly,
however Verifier didn't recognize it as valid.
Thus we introduce the following changes:
* Make DW_TAG_atomic_type valid tag for IR and DWARF (enabled only with -gdwarf-5)
* Add it to related docs
* Add DebugInfo tests
Differential Revision: https://reviews.llvm.org/D26144
llvm-svn: 285624
Change type of some missed DebugInfo-related alignment variables,
that are still uint64_t, to uint32_t.
Original change introduced in r284482.
llvm-svn: 285242
* Assume that clang passes non-zero alignment value to DIBuilder
only in case when it was forced by C++11 'alignas', C11 '_Alignas'
or compiler attribute '__attribute__((aligned (N)))'.
* Emit DW_AT_alignment if alignment is specified for type/object.
Differential Revision: https://reviews.llvm.org/D24425
llvm-svn: 285189
* Assume that clang passes non-zero alignment value to DIBuilder
only in case when it was forced by C++11 'alignas', C11 '_Alignas'
or compiler attribute '__attribute__((aligned (N)))'.
* Emit DW_AT_alignment if alignment is specified for type/object.
Differential Revision: https://reviews.llvm.org/D24425
llvm-svn: 285181
Summary:
Fixes PR28281.
MSVC lists indirect virtual base classes in the field list of a class,
using LF_IVBCLASS records. This change makes LLVM emit such records
when processing DW_TAG_inheritance tags with the DIFlagVirtual and
(newly introduced) DIFlagIndirect tags.
Reviewers: rnk, ruiu, zturner
Differential Revision: https://reviews.llvm.org/D25578
llvm-svn: 285130
Summary: With MSVC 2013 and GCC < 4.8 gone, we can use the "constexpr" keyword.
Reviewers: bkramer, mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25901
llvm-svn: 284947
- Add alignment attribute to DIVariable family
- Modify bitcode format to match new DIVariable representation
- Update tests to match these changes (also add bitcode upgrade test)
- Expect that frontend passes non-zero align value only when it is not default
(was forcibly aligned by alignas()/_Alignas()/__atribute__(aligned())
Differential Revision: https://reviews.llvm.org/D25073
llvm-svn: 284678
In futher patches we shall have alignment field added to DIVariable family
and switching from uint64_t to uint32_t will save 4 bytes per variable.
Differential Revision: https://reviews.llvm.org/D25620
llvm-svn: 284482
The core of the change is supposed to be NFC, however it also fixes
what I believe was an undefined behavior when calling:
va_start(ValueArgs, Desc);
with Desc being a StringRef.
Differential Revision: https://reviews.llvm.org/D25342
llvm-svn: 283671
Summary: -fsample-profile needs discriminator, which will not be added if built with -g0. This patch makes sure the discriminator is added for sample-profile at -g0. A followup patch will be send out to update clang tests.
Reviewers: davidxl, dblaikie, echristo, dnovillo
Subscribers: mehdi_amini, probinson, llvm-commits
Differential Revision: https://reviews.llvm.org/D25132
llvm-svn: 283565
If we don't truncate, LLVM asserts when the label difference doesn't fit
in a 16 bit field. This patch truncates two kinds of data: trailing null
terminated names in symbol records, and inline line tables. The inline
line table test that I have is too large (many MB), so I'm not checking
it in.
Hopefully fixes PR28264.
llvm-svn: 283403
This allows LLVM to describe locations of aggregate variables that have
been split by SROA.
Fixes PR29141
Reviewers: amccarth, majnemer
Differential Revision: https://reviews.llvm.org/D25253
llvm-svn: 283388
Previously we would give up when we saw the bitpiece DWARF expression
and print "[complex expression]" when actually we handled bitpiece
expressions outside the loop.
llvm-svn: 283355
The VS debugger doesn't appear to understand the 0x68 or 0x69 type
indices, which were probably intended for use on a platform where a C
'int' is 8 bits. So, use the character types instead. Clang was already
using the character types because '[u]int8_t' is usually defined in
terms of 'char'.
See the Rust issue for screenshots of what VS does:
https://github.com/rust-lang/rust/issues/36646
Fixes PR30552
llvm-svn: 282739
According to MSDN (see the PR), functions which don't touch any callee-saved
registers (including %rsp) don't need any unwind info.
This patch makes LLVM not emit unwind info for such functions, to save
binary size.
Differential Revision: https://reviews.llvm.org/D24748
llvm-svn: 282185
CodeView has an S_COMPILE3 record to identify the compiler and source language of the compiland. This record comes first in the debug$S section for the compiland. The debuggers rely on this record to know the source language of the code.
There was a little test fallout from introducing a new record into the symbols subsection.
Differential Revision: https://reviews.llvm.org/D24317
llvm-svn: 281990
This is a port of XRay to ARM 32-bit, without Thumb support yet. The XRay instrumentation support is moving up to AsmPrinter.
This is one of 3 commits to different repositories of XRay ARM port. The other 2 are:
https://reviews.llvm.org/D23932 (Clang test)
https://reviews.llvm.org/D23933 (compiler-rt)
Differential Revision: https://reviews.llvm.org/D23931
llvm-svn: 281878
This patch reverses the edge from DIGlobalVariable to GlobalVariable.
This will allow us to more easily preserve debug info metadata when
manipulating global variables.
Fixes PR30362. A program for upgrading test cases is attached to that
bug.
Differential Revision: http://reviews.llvm.org/D20147
llvm-svn: 281284
Now that MachineBasicBlock::reverse_instr_iterator knows when it's at
the end (since r281168 and r281170), implement
MachineBasicBlock::reverse_iterator directly on top of an
ilist::reverse_iterator by adding an IsReverse template parameter to
MachineInstrBundleIterator. This replaces another hard-to-reason-about
use of std::reverse_iterator on list iterators, matching the changes for
ilist::reverse_iterator from r280032 (see the "out of scope" section at
the end of that commit message). MachineBasicBlock::reverse_iterator
now has a handle to the current node and has obvious invalidation
semantics.
r280032 has a more detailed explanation of how list-style reverse
iterators (invalidated when the pointed-at node is deleted) are
different from vector-style reverse iterators like std::reverse_iterator
(invalidated on every operation). A great motivating example is this
commit's changes to lib/CodeGen/DeadMachineInstructionElim.cpp.
Note: If your out-of-tree backend deletes instructions while iterating
on a MachineBasicBlock::reverse_iterator or converts between
MachineBasicBlock::iterator and MachineBasicBlock::reverse_iterator,
you'll need to update your code in similar ways to r280032. The
following table might help:
[Old] ==> [New]
delete &*RI, RE = end() delete &*RI++
RI->erase(), RE = end() RI++->erase()
reverse_iterator(I) std::prev(I).getReverse()
reverse_iterator(I) ++I.getReverse()
--reverse_iterator(I) I.getReverse()
reverse_iterator(std::next(I)) I.getReverse()
RI.base() std::prev(RI).getReverse()
RI.base() ++RI.getReverse()
--RI.base() RI.getReverse()
std::next(RI).base() RI.getReverse()
(For more details, have a look at r280032.)
llvm-svn: 281172
This writes the full sequence of type records described in
Yaml to the TPI stream of the PDB file.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D24316
llvm-svn: 281063
This can happen when the frontend knows the debug info will be emitted
somewhere else. Usually this happens for dynamic classes with out of
line constructors or key functions, but it can also happen when modules
are enabled.
llvm-svn: 281060
And associated commits, as they broke the Thumb bots.
This reverts commit r280935.
This reverts commit r280891.
This reverts commit r280888.
llvm-svn: 280967
This is a port of XRay to ARM 32-bit, without Thumb support yet. The XRay instrumentation support is moving up to AsmPrinter.
This is one of 3 commits to different repositories of XRay ARM port. The other 2 are:
1. https://reviews.llvm.org/D23932 (Clang test)
2. https://reviews.llvm.org/D23933 (compiler-rt)
Differential Revision: https://reviews.llvm.org/D23931
llvm-svn: 280888
Summary:
Previously we were trying to represent this with the "contains" list of
the .cv_inline_linetable directive, which was not enough information.
Now we directly represent the chain of inlined call sites, so we know
what location to emit when we encounter a .cv_loc directive of an inner
inlined call site while emitting the line table of an outer function or
inlined call site. Fixes PR29146.
Also fixes PR29147, where we would crash when .cv_loc directives crossed
sections. Now we write down the section of the first .cv_loc directive,
and emit an error if any other .cv_loc directive for that function is in
a different section.
Also fixes issues with discontiguous inlined source locations, like in
this example:
volatile int unlikely_cond = 0;
extern void __declspec(noreturn) abort();
__forceinline void f() {
if (!unlikely_cond) abort();
}
int main() {
unlikely_cond = 0;
f();
unlikely_cond = 0;
}
Previously our tables gave bad location information for the 'abort'
call, and the debugger wouldn't snow the inlined stack frame for 'f'.
It is important to emit good line tables for this code pattern, because
it comes up whenever an asan bug occurs in an inlined function. The
__asan_report* stubs are generally placed after the normal function
epilogue, leading to discontiguous regions of inlined code.
Reviewers: majnemer, amccarth
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24014
llvm-svn: 280822
The shape of the vtable is passed down as the size of the
__vtbl_ptr_type. This special pointer type appears both as the pointee
type of the vptr type, and by itself in every dynamic class. For classes
with multiple vtables, only the shape of the primary vftable is
included, as the shape of all secondary vftables will be the same as in
the base class.
Fixes PR28150
llvm-svn: 280254
As written, the code should assert if this lookup would have ever
succeeded. Without looking through composite types, the type graph
should be acyclic.
llvm-svn: 280168
MCContext already has many tasks, and separating CodeView out from it is
probably a good idea. The .cv_loc tracking was modelled on the DWARF
tracking which lived directly in MCContext.
Removes the inclusion of MCCodeView.h from MCContext.h, so now there are
only 10 build actions while I hack on CodeView support instead of 265.
llvm-svn: 279847
This patch changes LLVM_CONSTEXPR variable declarations to const
variable declarations, since LLVM_CONSTEXPR expands to nothing if the
current compiler doesn't support constexpr. In all of the changed
cases, it looks like the code intended the variable to be const instead
of sometimes-constexpr sometimes-not.
llvm-svn: 279696
In cases where .dwo/.dwp files are guaranteed to be available, skipping
the extra online (in the .o file) inline info can save a substantial
amount of space - see the original r221306 for more details there.
llvm-svn: 279650
Re-apply this commit with the deletion of a MachineFunction delegated to
a separate pass to avoid use after free when doing this directly in
AsmPrinter.
This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.
This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.
Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.
Differential Revision: http://reviews.llvm.org/D23736
llvm-svn: 279564
This patch removes the MachineFunctionAnalysis. Instead we keep a
map from IR Function to MachineFunction in the MachineModuleInfo.
This allows the insertion of ModulePasses into the codegen pipeline
without breaking it because the MachineFunctionAnalysis gets dropped
before a module pass.
Peak memory should stay unchanged without a ModulePass in the codegen
pipeline: Previously the MachineFunction was freed at the end of a codegen
function pipeline because the MachineFunctionAnalysis was dropped; With
this patch the MachineFunction is freed after the AsmPrinter has
finished.
Differential Revision: http://reviews.llvm.org/D23736
llvm-svn: 279502
This is used to mark functions with the C++11 [[ noreturn ]] or C11 _Noreturn
attributes.
Patch by Victor Leschuk!
https://reviews.llvm.org/D23167
llvm-svn: 278940
Summary: Some backends, like WebAssembly, use virtual registers instead of physical registers. This crashes the DbgValueHistoryCalculator pass, which assumes that all registers are physical. Instead, skip virtual registers when iterating aliases, and assume that they are clobbered.
Reviewers: dexonsmith, dschuff, aprantl
Subscribers: yurydelendik, llvm-commits, jfb, sunfish
Differential Revision: https://reviews.llvm.org/D22590
llvm-svn: 278371
Until now, our use case for the visitor has been to take a stream of bytes
representing a type stream, deserialize the records in sequence, and do
something with them, where "something" is determined by how the user
implements a particular set of callbacks on an abstract class.
For actually writing PDBs, however, we want to do the reverse. We have
some kind of description of the list of records in their in-memory format,
and we want to process each one. Perhaps by serializing them to a byte
stream, or perhaps by converting them from one description format (Yaml)
to another (in-memory representation).
This was difficult in the current model because deserialization and
invoking the callbacks were tightly coupled.
With this patch we change this so that TypeDeserializer is itself an
implementation of the particular set of callbacks. This decouples
deserialization from the iteration over a list of records and invocation
of the callbacks. TypeDeserializer is initialized with another
implementation of the callback interface, so that upon deserialization it
can pass the deserialized record through to the next set of callbacks. In
a sense this is like an implementation of the Decorator design pattern,
where the Deserializer is a decorator.
This will be useful for writing Pdbs from yaml, where we have a
description of the type records in Yaml format. In this case, the visitor
implementation would have each visitation callback method implemented in
such a way as to extract the proper set of fields from the Yaml, and it
could maintain state that builds up a list of these records. Finally at
the end we can pass this information through to another set of callbacks
which serializes them into a byte stream.
Reviewed By: majnemer, ruiu, rnk
Differential Revision: https://reviews.llvm.org/D23177
llvm-svn: 277871
Previously this change was submitted from a Windows machine, so
changes made to the case of filenames and directory names did
not survive the commit, and as a result the CMake source file
names and the on-disk file names did not match on case-sensitive
file systems.
I'm resubmitting this patch from a Linux system, which hopefully
allows the case changes to make it through unfettered.
llvm-svn: 277213
In a previous patch, it was suggested to use all caps instead of
rolling caps for initialisms, so this patch changes everything
to do this.
llvm-svn: 277190
A ConstantVector can have ConstantExpr operands and vice versa.
However, the folder had no ability to fold ConstantVectors which, in
some cases, was an optimization barrier.
Instead, rephrase the folder in terms of Constants instead of
ConstantExprs and teach callers how to deal with failure.
llvm-svn: 277099
TargetOptions wants the ExceptionHandling enum. Move that to
MCTargetOptions.h to avoid transitively including Dwarf.h everywhere in
clang. Now you can add a DWARF tag without a full rebuild of clang
semantic analysis.
llvm-svn: 276883
This provides a better layering of responsibilities among different
aspects of PDB writing code. Some of the MSF related code was
contained in CodeView, and some was in PDB prior to this. Further,
we were often saying PDB when we meant MSF, and the two are
actually independent of each other since in theory you can have
other types of data besides PDB data in an MSF. So, this patch
separates the MSF specific code into its own library, with no
dependencies on anything else, and DebugInfoCodeView and
DebugInfoPDB take dependencies on DebugInfoMsf.
llvm-svn: 276458
Remove unnecessary clutter in assembly output. When using SjLj EH, the CFI is
not actually used for anything. Do not emit the CFI needlessly. The minor test
adjustments are interesting. The prologue test was just overzealous matcching.
The interesting case is the LSDA change. It was originally added to ensure that
various compilations did not mangle the name (it explicitly checked the name!).
However, subsequent cleanups made it more reliant on the CFI to find the name.
Parse the generated code flow to generically find the label still.
llvm-svn: 275614
For a fully inlined call chain like a -> b -> c -> d, we were emitting
line info for 'd' 3 separate times: once for d's actual InlineSite line
table, and twice for 'b' and 'c'. This is particularly inefficient when
all these functions are in different headers, because now we need to
encode the file change. Windbg was coping with our suboptimal output, so
this should not be noticeable from the debugger.
llvm-svn: 275502
Added support for:
1. Multi dimension array.
2. Array of structure type, which previously was declared incompletely.
3. Dynamic size array.
4. Array where element type is a typedef, volatile or constant (this should resolve PR28311).
Differential Revision: http://reviews.llvm.org/D21526
llvm-svn: 275167
Now with a corrected test to account for a recently supported properties bit in the debug info of a struct.
Original review: http://reviews.llvm.org/D21939
This reverts commit 970c3fd497a28d25dd69526eb52594a696c37968.
llvm-svn: 274661
Given something like:
struct S {
int a;
struct { int b; };
};
We would fail to give 'b' offset 4. Instead, we would give it the
offset it has inside of it's struct.
llvm-svn: 274400
A namespace without a name should be written out as `anonymous
namespace' while a tag type without a name should be written out as
<unnamed-tag>.
llvm-svn: 274399
MSVC makes up names for these anonymous structs, but we don't (yet).
Eventually Clang should use getTypedefNameForAnonDecl() to put some name
in the debug info, and we can update the test case when that happens.
llvm-svn: 274391
We were asserting that our type records were valid when emitting
assembly, but not when emitting an object file.
I've been seeing lots of LNK1285 errors (corrupt PDB) during incremental
debug self-host builds with the MSVC linker, and hopefully this will
catch some of them earlier.
llvm-svn: 274373
Summary:
This represents the adjustment applied to the implicit 'this' parameter
in the prologue of a virtual method in the MS C++ ABI. The adjustment is
always zero unless multiple inheritance is involved.
This increases the size of DISubprogram by 8 bytes, unfortunately. The
adjustment really is a signed 32-bit integer. If this size increase is
too much, we could probably win it back by splitting out a subclass with
info specific to virtual methods (virtuality, vindex, thisadjustment,
containingType).
Reviewers: aprantl, dexonsmith
Subscribers: aaboud, amccarth, llvm-commits
Differential Revision: http://reviews.llvm.org/D21614
llvm-svn: 274325
CodeView need to know the offset of the storage allocation for a
bitfield. Encode this via the "extraData" field in DIDerivedType and
introduced a new flag, DIFlagBitField, to indicate whether or not a
member is a bitfield.
This fixes PR28162.
Differential Revision: http://reviews.llvm.org/D21782
llvm-svn: 274200
This is mostly a mechanical change to make TargetInstrInfo API take
MachineInstr& (instead of MachineInstr* or MachineBasicBlock::iterator)
when the argument is expected to be a valid MachineInstr. This is a
general API improvement.
Although it would be possible to do this one function at a time, that
would demand a quadratic amount of churn since many of these functions
call each other. Instead I've done everything as a block and just
updated what was necessary.
This is mostly mechanical fixes: adding and removing `*` and `&`
operators. The only non-mechanical change is to split
ARMBaseInstrInfo::getOperandLatencyImpl out from
ARMBaseInstrInfo::getOperandLatency. Previously, the latter took a
`MachineInstr*` which it updated to the instruction bundle leader; now,
the latter calls the former either with the same `MachineInstr&` or the
bundle leader.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
Note: I updated WebAssembly, Lanai, and AVR (despite being
off-by-default) since it turned out to be easy. I couldn't run tests
for AVR since llc doesn't link with it turned on.
llvm-svn: 274189
I think this converts all the simple cases that really just care about
the generated code being position independent or not. The remaining
uses are a bit more complicated and are checking things like "is this
a library or executable" or "can this symbol be preempted".
llvm-svn: 274055
This fixes an embarrassing bug when emitting .debug_loc entries for 64-bit+ constants,
which were previously silently truncated to 32 bits.
<rdar://problem/26843232>
llvm-svn: 273736
Clang emits them in reverse order to conform to the ABI, which requires
left-to-right destruction. As a result, the order doesn't fall out
naturally, and we have to sort things out in the backend.
Fixes PR28213
llvm-svn: 273696
There are two remaining issues here:
1. No vbptr information
2. Need to mention indirect virtual bases
Getting indirect virtual bases is just a matter of adding an "indirect"
flag, emitting them in the frontend, and ignoring them when appropriate
for DWARF.
All virtual bases use the same artificial vbptr field, so I think the
vbptr offset will be best represented by an implicit __vbptr$ClassName
member similar to our existing __vptr$ member.
llvm-svn: 273688
This is a convenience iterator that allows clients to enumerate the
GlobalObjects within a Module.
Also start using it in a few places where it is obviously the right thing
to use.
Differential Revision: http://reviews.llvm.org/D21580
llvm-svn: 273470
CodeView needs to know if a virtual method was introduced in the current
class, and base classes may not have complete type information, so we
need to thread this bit through from the frontend.
llvm-svn: 273453
This is the motivating example:
struct B { int b; };
struct A { B *b; };
int f(A *p) { return p->b->b; }
Clang emits complete types for both A and B because they are required to
be complete, but our CodeView emission would only emit forward
declarations of A and B. This was a consequence of the fact that the A*
type must reference the forward declaration of A, which doesn't
reference B at all.
We can't eagerly emit complete definitions of A and B when we request
the forward declaration's type index because of recursive types like
linked lists. If we did that, our stack usage could get out of hand, and
it would be possible to lower a type while attempting to lower a type,
and we would need to double check if our type is already present in the
TypeIndexMap after all recursive getTypeIndex calls.
Instead, defer complete type emission until after all type lowering has
completed. This ensures that all referenced complete types are emitted,
and that type lowering is not re-entrant.
llvm-svn: 273443
From a design perspective, complete record type emission should not
depend on information from other complete record types.
Currently this map is unused, and needlessly accumulates data throughout
compilation.
llvm-svn: 273431
We now include namespace scope info in LF_FUNC_ID records and we emit
LF_MFUNC_ID records for member functions as we should.
Class names are now fully qualified, which is what MSVC does.
Add a little bit of scaffolding to handle ThisAdjustment when it arrives
in DISubprogram.
llvm-svn: 273358
Summary:
Fix the computation of the offsets present in the scopetable when using the
SEH (__except_handler4).
This patch added an intrinsic to track the position of the allocation on the
stack of the EHGuard. This position is needed when producing the ScopeTable.
```
struct _EH4_SCOPETABLE {
DWORD GSCookieOffset;
DWORD GSCookieXOROffset;
DWORD EHCookieOffset;
DWORD EHCookieXOROffset;
_EH4_SCOPETABLE_RECORD ScopeRecord[1];
};
struct _EH4_SCOPETABLE_RECORD {
DWORD EnclosingLevel;
long (*FilterFunc)();
union {
void (*HandlerAddress)();
void (*FinallyFunc)();
};
};
```
The code to generate the EHCookie is added in `X86WinEHState.cpp`.
Which is adding these instructions when using SEH4.
```
Lfunc_begin0:
# BB#0: # %entry
pushl %ebp
movl %esp, %ebp
pushl %ebx
pushl %edi
pushl %esi
subl $28, %esp
movl %ebp, %eax <<-- Loading FramePtr
movl %esp, -36(%ebp)
movl $-2, -16(%ebp)
movl $L__ehtable$use_except_handler4_ssp, %ecx
xorl ___security_cookie, %ecx
movl %ecx, -20(%ebp)
xorl ___security_cookie, %eax <<-- XOR FramePtr and Cookie
movl %eax, -40(%ebp) <<-- Storing EHGuard
leal -28(%ebp), %eax
movl $__except_handler4, -24(%ebp)
movl %fs:0, %ecx
movl %ecx, -28(%ebp)
movl %eax, %fs:0
movl $0, -16(%ebp)
calll _may_throw_or_crash
LBB1_1: # %cont
movl -28(%ebp), %eax
movl %eax, %fs:0
addl $28, %esp
popl %esi
popl %edi
popl %ebx
popl %ebp
retl
```
And the corresponding offset is computed:
```
Luse_except_handler4_ssp$parent_frame_offset = -36
.p2align 2
L__ehtable$use_except_handler4_ssp:
.long -2 # GSCookieOffset
.long 0 # GSCookieXOROffset
.long -40 # EHCookieOffset <<----
.long 0 # EHCookieXOROffset
.long -2 # ToState
.long _catchall_filt # FilterFunction
.long LBB1_2 # ExceptionHandler
```
Clang is not yet producing function using SEH4, but it's a work in progress.
This patch is a step toward having a valid implementation of SEH4.
Unfortunately, it is not yet fully working. The EH registration block is not
allocated at the right offset on the stack.
Reviewers: rnk, majnemer
Subscribers: llvm-commits, chrisha
Differential Revision: http://reviews.llvm.org/D21231
llvm-svn: 273281
When you have a map holding a unique_ptr, hold a reference to the raw
pointer instead of the unique pointer. The unique_ptr will be moved on
rehash.
llvm-svn: 273268