Summary: This makes a change to the state used to maintain visited information for depth first iterator. We know assume a method "completed(...)" which is called after all children of a node have been visited. In all existing cases, this method does nothing so this patch has no functional changes. It will however allow a client to distinguish back from cross edges in a DFS tree.
Reviewers: nadav, mehdi_amini, dberlin
Subscribers: MatzeB, mzolotukhin, twoh, freik, llvm-commits
Differential Revision: https://reviews.llvm.org/D25191
llvm-svn: 283391
This allows LLVM to describe locations of aggregate variables that have
been split by SROA.
Fixes PR29141
Reviewers: amccarth, majnemer
Differential Revision: https://reviews.llvm.org/D25253
llvm-svn: 283388
Previously we would give up when we saw the bitpiece DWARF expression
and print "[complex expression]" when actually we handled bitpiece
expressions outside the loop.
llvm-svn: 283355
Summary: Both computeKnownBits and ComputeNumSignBits can now do a simple
look-through of EXTRACT_VECTOR_ELT. It will compute the result based
on the known bits (or known sign bits) for the vector that the element
is extracted from.
Reviewers: bogner, tstellarAMD, mkuper
Subscribers: wdng, RKSimon, jyknight, llvm-commits, nhaehnle
Differential Revision: https://reviews.llvm.org/D25007
llvm-svn: 283347
This reverts commit 062ace9764953e9769142c1099281a345f9b6bdc.
Issue with loop info and block removal revealed by polly.
I have a fix for this issue already in another patch, I'll re-roll this
together with that fix, and a test case.
llvm-svn: 283292
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
Issue from previous rollback fixed, and a new test was added for that
case as well.
Differential revision: https://reviews.llvm.org/D18226
llvm-svn: 283274
The motivation for the change is that we can't have pseudo-global settings for
codegen living in TargetOptions because that doesn't work with LTO.
Ideally, these reciprocal attributes will be moved to the instruction-level via
FMF, metadata, or something else. But making them function attributes is at least
an improvement over the current state.
The ingredients of this patch are:
Remove the reciprocal estimate command-line debug option.
Add TargetRecip to TargetLowering.
Remove TargetRecip from TargetOptions.
Clean up the TargetRecip implementation to work with this new scheme.
Set the default reciprocal settings in TargetLoweringBase (everything is off).
Update the PowerPC defaults, users, and tests.
Update the x86 defaults, users, and tests.
Note that if this patch needs to be reverted, the related clang patch checked in
at r283251 should be reverted too.
Differential Revision: https://reviews.llvm.org/D24816
llvm-svn: 283252
The SMULO/UMULO DAG nodes, when not directly supported by the target,
expand to a multiplication twice as wide. In case that the resulting
type is not legal, an __mul?i3 intrinsic is used. Since the type is
not legal, the legalizer cannot directly call the intrinsic with
the wide arguments; instead, it "pre-lowers" them by splitting them
in halves.
The "pre-lowering" code in essence made assumptions about
the calling convention, specifically that i(N*2) values will be
split into two iN values and passed in consecutive registers in
little-endian order. This, naturally, breaks on a big-endian system,
such as our OR1K out-of-tree backend.
Thanks to James Miller <james@aatch.net> for help in debugging.
Differential Revision: https://reviews.llvm.org/D25223
llvm-svn: 283203
The tail duplication pass uses an assumed layout when making duplication
decisions. This is fine, but passes up duplication opportunities that
may arise when blocks are outlined. Because we want the updated CFG to
affect subsequent placement decisions, this change must occur during
placement.
In order to achieve this goal, TailDuplicationPass is split into a
utility class, TailDuplicator, and the pass itself. The pass delegates
nearly everything to the TailDuplicator object, except for looping over
the blocks in a function. This allows the same code to be used for tail
duplication in both places.
This change, in concert with outlining optional branches, allows
triangle shaped code to perform much better, esepecially when the
taken/untaken branches are correlated, as it creates a second spine when
the tests are small enough.
llvm-svn: 283164
Summary:
Previously, when allocating unspillable live ranges, we would never
attempt to split. We would always bail out and try last ditch graph
recoloring.
This patch changes this by attempting to split all live intervals before
performing recoloring.
This fixes LLVM bug PR14879.
I can't add test cases for any backends other than AVR because none of
them have small enough register classes to trigger the bug.
Reviewers: qcolombet
Subscribers: MatzeB
Differential Revision: https://reviews.llvm.org/D25070
llvm-svn: 282852
Instead of producing a mapping for all the operands, we only generate a
mapping for the definition. Indeed, the other operands are not
constrained by the instruction and thus, we should leave the choice to
the actual definition to do the right thing.
In pratice this is almost NFC, but with one advantage. We will have only
one instance of OperandsMapping for each copy and phi that map to one
register bank instead of one different instance for each different
number of operands for each copy and phi.
llvm-svn: 282756
The VS debugger doesn't appear to understand the 0x68 or 0x69 type
indices, which were probably intended for use on a platform where a C
'int' is 8 bits. So, use the character types instead. Clang was already
using the character types because '[u]int8_t' is usually defined in
terms of 'char'.
See the Rust issue for screenshots of what VS does:
https://github.com/rust-lang/rust/issues/36646
Fixes PR30552
llvm-svn: 282739
This is a step toward statically allocate InstructionMapping. Like the
previous few commits, the goal is to move toward a TableGen'ed like
structure with no dynamic allocation at all.
This should already improve compile time by getting rid of a bunch of
memmove of SmallVectors.
llvm-svn: 282643
LiveDebugVariables doesn't propagate DBG_VALUEs accross basic block
boundaries any more; this functionality was split into LiveDebugValues.
We can thus drop the now dead references to LexicalScopes from LiveDebugVariables.
llvm-svn: 282638
Normally, if conversion would add implicit uses for redefined registers,
e.g. R0<def> = add_if ..., R0<imp-use>. However, if only subregisters of
R0 are known to be live but not R0 itself, such implicit uses will not be
added, causing prior definitions of such subregisters and R0 itself to
become dead.
llvm-svn: 282626
This addresses PR26055 LiveDebugValues is very slow.
Contrary to the old LiveDebugVariables pass LiveDebugValues currently
doesn't look at the lexical scopes before inserting a DBG_VALUE
intrinsic. This means that we often propagate DBG_VALUEs much further
down than necessary. This is especially noticeable in large C++
functions with many inlined method calls that all use the same
"this"-pointer.
For example, in the following code it makes no sense to propagate the
inlined variable a from the first inlined call to f() into any of the
subsequent basic blocks, because the variable will always be out of
scope:
void sink(int a);
void __attribute((always_inline)) f(int a) { sink(a); }
void foo(int i) {
f(i);
if (i)
f(i);
f(i);
}
This patch reuses the LexicalScopes infrastructure we have for
LiveDebugVariables to take this into account.
The effect on compile time and memory consumption is quite noticeable:
I tested a benchmark that is a large C++ source with an enormous
amount of inlined "this"-pointers that would previously eat >24GiB
(most of them for DBG_VALUE intrinsics) and whose compile time was
dominated by LiveDebugValues. With this patch applied the memory
consumption is 1GiB and 1.7% of the time is spent in LiveDebugValues.
https://reviews.llvm.org/D24994
Thanks to Daniel Berlin and Keith Walker for reviewing!
llvm-svn: 282611
Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search which only checks for parallel stores
through the chain subgraph. This is cleaner as the separation of
non-interfering loads/stores from the store-merging logic.
Whem merging stores, search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited. This improves the quality of the
output SelectionDAG and generally the output CodeGen (with some
exceptions).
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the the chain aggregation in the merged stores across
code paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seemed sufficient to not cause regressions in
tests.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable. Some tests relying on the order were changed to use
volatile memory operations
Noteworthy tests:
CodeGen/AArch64/argument-blocks.ll -
It's not entirely clear what the test_varargs_stackalign test is
supposed to be asserting, but the new code looks right.
CodeGen/AArch64/arm64-memset-inline.lli -
CodeGen/AArch64/arm64-stur.ll -
CodeGen/ARM/memset-inline.ll -
The backend now generates *worse* code due to store merging
succeeding, as we do do a 16-byte constant-zero store efficiently.
CodeGen/AArch64/merge-store.ll -
Improved, but there still seems to be an extraneous vector insert
from an element to itself?
CodeGen/PowerPC/ppc64-align-long-double.ll -
Worse code emitted in this case, due to the improved store->load
forwarding.
CodeGen/X86/dag-merge-fast-accesses.ll -
CodeGen/X86/MergeConsecutiveStores.ll -
CodeGen/X86/stores-merging.ll -
CodeGen/Mips/load-store-left-right.ll -
Restored correct merging of non-aligned stores
CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll -
Improved. Correctly merges buffer_store_dword calls
CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll -
Improved. Sidesteps loading a stored value and merges two stores
CodeGen/X86/pr18023.ll -
This test has been removed, as it was asserting incorrect
behavior. Non-volatile stores *CAN* be moved past volatile loads,
and now are.
CodeGen/X86/vector-idiv.ll -
CodeGen/X86/vector-lzcnt-128.ll -
It's basically impossible to tell what these tests are actually
testing. But, looks like the code got better due to the memory
operations being recognized as non-aliasing.
CodeGen/X86/win32-eh.ll -
Both loads of the securitycookie are now merged.
CodeGen/AMDGPU/vgpr-spill-emergency-stack-slot-compute.ll -
This test appears to work but no longer exhibits the spill
behavior.
Reviewers: arsenm, hfinkel, tstellarAMD, nhaehnle, jyknight
Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, resistor, tstellarAMD, t.p.northover, spatel
Differential Revision: https://reviews.llvm.org/D14834
llvm-svn: 282600
This check currently doesn't seem to do anything useful on any in-tree target:
On non-x86, it always evaluates to false, so we never hit the code path that
creates the shuffle with zero.
On x86, it just forwards to isShuffleMaskLegal(), which is a reasonable thing to
query in general, but doesn't make sense if only restricted to zero blends.
Differential Revision: https://reviews.llvm.org/D24625
llvm-svn: 282567
Summary:
The current implementation of isConstantPhysReg() checks for defs of
physical registers to determine if they are constant. Some
architectures (e.g. AArch64 XZR/WZR) have registers that are constant
and may be used as destinations to indicate the generated value is
discarded, preventing isConstantPhysReg() from returning true. This
change adds a TargetRegisterInfo hook that overrides the no defs check
for cases such as this.
Reviewers: MatzeB, qcolombet, t.p.northover, jmolloy
Subscribers: junbuml, aemerson, mcrosier, rengolin
Differential Revision: https://reviews.llvm.org/D24570
llvm-svn: 282543
Variables are sometimes missing their debug location information in
blocks in which the variables should be available. This would occur
when one or more predecessor blocks had not yet been visited by the
routine which propagated the information from predecessor blocks.
This is addressed by only considering predecessor blocks which have
already been visited.
The solution to this problem was suggested by Daniel Berlin on the
LLVM developer mailing list.
Differential Revision: https://reviews.llvm.org/D24927
llvm-svn: 282506
Many high-performance processors have a dedicated branch predictor for
indirect branches, commonly used with jump tables. As sophisticated as such
branch predictors are, they tend to have well defined limits beyond which
their effectiveness is hampered or even nullified. One such limit is the
number of possible destinations for a given indirect branches that such
branch predictors can handle.
This patch considers a limit that a target may set to the number of
destination addresses in a jump table.
Patch by: Evandro Menezes <e.menezes@samsung.com>, Aditya Kumar
<aditya.k7@samsung.com>, Sebastian Pop <s.pop@samsung.com>.
Differential revision: https://reviews.llvm.org/D21940
llvm-svn: 282412
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
This recommit contains fixes for a nasty bug related to fast-isel fallback - because
fast-isel doesn't know about this optimization, if it runs and emits references to
a string that we inline (because fast-isel fell back to SDAG) we will end up
with an inlined string and also an out-of-line string, and we won't emit the
out-of-line string, causing backend failures.
It also contains fixes for emitting .text relocations which made the sanitizer
bots unhappy.
llvm-svn: 282387