Summary:
Fixes PR21100 which is caused by inconsistency between the declared return type
and the expected return type at the call site. The new behavior is consistent
with nvcc and the NVPTXTargetLowering::getPrototype function.
Test Plan: test/Codegen/NVPTX/vector-return.ll
Reviewers: jholewinski
Reviewed By: jholewinski
Subscribers: llvm-commits, meheff, eliben, jholewinski
Differential Revision: http://reviews.llvm.org/D5612
llvm-svn: 220607
Summary:
Fixes a FIXME in MachineSinking. Instead of using the simple heuristics in
isPostDominatedBy, use the real MachinePostDominatorTree and MachineLoopInfo.
The old heuristics caused instructions to sink unnecessarily, and might create
register pressure.
This is the second try of the fix. The first one (D4814) caused a performance
regression due to failing to sink instructions out of loops (PR21115). This
patch fixes PR21115 by sinking an instruction from a deeper loop to a shallower
one regardless of whether the target block post-dominates the source.
Thanks Alexey Volkov for reporting PR21115!
Test Plan:
Added a NVPTX codegen test to verify that our change prevents the backend from
over-sinking. It also shows the unnecessary register pressure caused by
over-sinking.
Added an X86 test to verify we can sink instructions out of loops regardless of
the dominance relationship. This test is reduced from Alexey's test in PR21115.
Updated an affected test in X86.
Also ran SPEC CINT2006 and llvm-test-suite for compilation time and runtime
performance. Results are attached separately in the review thread.
Reviewers: Jiangning, resistor, hfinkel
Reviewed By: hfinkel
Subscribers: hfinkel, bruno, volkalexey, llvm-commits, meheff, eliben, jholewinski
Differential Revision: http://reviews.llvm.org/D5633
llvm-svn: 219773
Summary:
Fixes a FIXME in MachineSinking. Instead of using the simple heuristics
in isPostDominatedBy, use the real MachinePostDominatorTree. The old
heuristics caused instructions to sink unnecessarily, and might create
register pressure.
Test Plan:
Added a NVPTX codegen test to verify that our change is in effect. It also
shows the unnecessary register pressure caused by over-sinking. Updated
affected tests in AArch64 and X86.
Reviewers: eliben, meheff, Jiangning
Reviewed By: Jiangning
Subscribers: jholewinski, aemerson, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D4814
llvm-svn: 216862
Summary:
Instead of specifying the alignment as metadata which may be destroyed by
transformation passes, make the alignment the second argument to ldu/ldg
intrinsic calls.
Test Plan:
ldu-ldg.ll
ldu-i8.ll
ldu-reg-plus-offset.ll
Reviewers: eliben, meheff, jholewinski
Reviewed By: meheff, jholewinski
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D5093
llvm-svn: 216731
With optimizations disabled, we disable the isel patterns for mul.wide; but we
were still generating MULWIDE ISD nodes. Now, we only try to generate MULWIDE
ISD nodes in DAGCombine if the optimization level is not zero.
llvm-svn: 213773
Actual support for softening f16 operations is still limited, and can be added
when it's needed. But Soften is much closer to being a useful thing to try
than keeping it Legal when no registers can actually hold such values.
Longer term, we probably want something between Soften and Promote semantics
for most targets, it'll be more efficient to promote the 4 basic operations to
f32 than libcall them.
llvm-svn: 213372
Clang may well start emitting these soon, and while it may not be
directly relevant for OpenCL or GLSL, the instructions were just
sitting there waiting to be used.
llvm-svn: 213356
We now consider the FPOpFusion flag when determining whether
to fuse ops. We also explicitly emit add.rn when fusion is
disabled to prevent ptxas from fusing the operations on its
own.
llvm-svn: 213287
This also uses TSFlags to mark machine instructions that are surface/texture
accesses, as well as the vector width for surface operations. This is used
to simplify some of the switch statements that need to detect surface/texture
instructions
llvm-svn: 213256
We were not considering the stated alignment on vector loads/stores,
leading us to generate vector instructions even when we do not have
sufficient alignment.
Now, for IR like:
%1 = load <4 x float>, <4 x float>* %ptr, align 4
we will generate correct, conservative PTX like:
ld.f32 ... [%ptr]
ld.f32 ... [%ptr+4]
ld.f32 ... [%ptr+8]
ld.f32 ... [%ptr+12]
Or if we have an alignment of 8 (for example), we can
generate code like:
ld.v2.f32 ... [%ptr]
ld.v2.f32 ... [%ptr+8]
llvm-svn: 213186
The address space of the pointer must be global (1) for these intrinsics. There must also be alignment metadata attached to the intrinsic calls, e.g.
%val = tail call i32 @llvm.nvvm.ldu.i.global.i32.p1i32(i32 addrspace(1)* %ptr), !align !0!0 = metadata !{i32 4}
llvm-svn: 211939
As a follow-up to r210375 which canonicalizes addrspacecast
instructions, this patch canonicalizes addrspacecast constant
expressions.
Given clang uses ConstantExpr::getAddrSpaceCast to emit addrspacecast
cosntant expressions, this patch is also a step towards having the
frontend emit canonicalized addrspacecasts.
Piggyback a minor refactor in InstCombineCasts.cpp
Update three affected tests in addrspacecast-alias.ll,
access-non-generic.ll and constant-fold-gep.ll and added one new test in
constant-fold-address-space-pointer.ll
llvm-svn: 211004
Alias with unnamed_addr were in a strange state. It is stored in GlobalValue,
the language reference talks about "unnamed_addr aliases" but the verifier
was rejecting them.
It seems natural to allow unnamed_addr in aliases:
* It is a property of how it is accessed, not of the data itself.
* It is perfectly possible to write code that depends on the address
of an alias.
This patch then makes unname_addr legal for aliases. One side effect is that
the syntax changes for a corner case: In globals, unnamed_addr is now printed
before the address space.
llvm-svn: 210302
This commit adds intrinsics and codegen support for the surface read/write and texture read instructions that take an explicit sampler parameter. Codegen operates on image handles at the PTX level, but falls back to direct replacement of handles with kernel arguments if image handles are not enabled. Note that image handles are explicitly disabled for all target architectures in this change (to be enabled later).
llvm-svn: 205907
Removes unnecessary casts from non-generic address spaces to the generic address
space for certain code patterns.
Patch by Jingyue Wu.
llvm-svn: 205571
This is a more thorough fix for the issue than r203483. An IR pass will run
before NVPTX codegen to make sure there are no invalid symbol names that can't
be consumed by the ptxas assembler.
llvm-svn: 205212
The "noduplicate" function attribute exists to prevent certain optimizations
from duplicating calls to the function. This is important on platforms where
certain function call duplications are unsafe (for example execution barriers
for CUDA and OpenCL).
This patch makes it possible to specify intrinsics as "noduplicate" and
translates that to the appropriate function attribute.
llvm-svn: 204200
These linkages were introduced some time ago, but it was never very
clear what exactly their semantics were or what they should be used
for. Some investigation found these uses:
* utf-16 strings in clang.
* non-unnamed_addr strings produced by the sanitizers.
It turns out they were just working around a more fundamental problem.
For some sections a MachO linker needs a symbol in order to split the
section into atoms, and llvm had no idea that was the case. I fixed
that in r201700 and it is now safe to use the private linkage. When
the object ends up in a section that requires symbols, llvm will use a
'l' prefix instead of a 'L' prefix and things just work.
With that, these linkages were already dead, but there was a potential
future user in the objc metadata information. I am still looking at
CGObjcMac.cpp, but at this point I am convinced that linker_private
and linker_private_weak are not what they need.
The objc uses are currently split in
* Regular symbols (no '\01' prefix). LLVM already directly provides
whatever semantics they need.
* Uses of a private name (start with "\01L" or "\01l") and private
linkage. We can drop the "\01L" and "\01l" prefixes as soon as llvm
agrees with clang on L being ok or not for a given section. I have two
patches in code review for this.
* Uses of private name and weak linkage.
The last case is the one that one could think would fit one of these
linkages. That is not the case. The semantics are
* the linker will merge these symbol by *name*.
* the linker will hide them in the final DSO.
Given that the merging is done by name, any of the private (or
internal) linkages would be a bad match. They allow llvm to rename the
symbols, and that is really not what we want. From the llvm point of
view, these objects should really be (linkonce|weak)(_odr)?.
For now, just keeping the "\01l" prefix is probably the best for these
symbols. If we one day want to have a more direct support in llvm,
IMHO what we should add is not a linkage, it is just a hidden_symbol
attribute. It would be applicable to multiple linkages. For example,
on weak it would produce the current behavior we have for objc
metadata. On internal, it would be equivalent to private (and we
should then remove private).
llvm-svn: 203866