wfi, sel, sev and bkpt. All would disassemble properly before, but more
explicitness is good, especially with the integrated assembler coming in
the future.
llvm-svn: 116427
concept level stuff at this point, but it is generally working for those
instructions that know how to map the operands.
This patch fills in the register operands for add/sub/or/etc instructions
and adds the conditional execution predicate encoding.
llvm-svn: 116112
allow target to correctly compute latency for cases where static scheduling
itineraries isn't sufficient. e.g. variable_ops instructions such as
ARM::ldm.
This also allows target without scheduling itineraries to compute operand
latencies. e.g. X86 can return (approximated) latencies for high latency
instructions such as division.
- Compute operand latencies for those defined by load multiple instructions,
e.g. ldm and those used by store multiple instructions, e.g. stm.
llvm-svn: 115755
1. Cortex-a9 8-bit and 16-bit loads / stores AGU cycles are 1 cycle longer than 32-bit ones.
2. Cortex-a9 is out-of-order so model all read cycles as cycle 1.
3. Lots of other random fixes for A8 and A9.
llvm-svn: 115121
which require the use of the shifter-operand. This will be used to split
the ldr/str instructions such that those versions needing the shifter operand
can get a different scheduling itenerary, as in some cases, the use of the
shifter can cause different scheduling than the simpler forms.
llvm-svn: 115066
(yet) recognize the 'trap' mnemonic, so we use .short/.long to emit the
opcode directly. On Darwin, however, we do want the mnemonic for more
readable assembly code and better disassembly.
Adjust the .td file to use the 'trap' mnemonic and handle using the binutils
workaround in the assembly printer. Also tweak the formatting of the opcode
values to make them consistent between the MC printer and the old printer.
llvm-svn: 114679
passed the root of the match, even though only a few patterns
actually needed this (one in X86, several in ARM [which should
be refactored anyway], and some in CellSPU that I don't feel
like detangling). Instead of requiring all ComplexPatterns to
take the dead root, have targets opt into getting the root by
putting SDNPWantRoot on the ComplexPattern.
llvm-svn: 114471
int x(int t) {
if (t & 256)
return -26;
return 0;
}
We generate this:
tst.w r0, #256
mvn r0, #25
it eq
moveq r0, #0
while gcc generates this:
ands r0, r0, #256
it ne
mvnne r0, #25
bx lr
Scandalous really!
During ISel time, we can look for this particular pattern. One where we have a
"MOVCC" that uses the flag off of a CMPZ that itself is comparing an AND
instruction to 0. Something like this (greatly simplified):
%r0 = ISD::AND ...
ARMISD::CMPZ %r0, 0 @ sets [CPSR]
%r0 = ARMISD::MOVCC 0, -26 @ reads [CPSR]
All we have to do is convert the "ISD::AND" into an "ARM::ANDS" that sets [CPSR]
when it's zero. The zero value will all ready be in the %r0 register and we only
need to change it if the AND wasn't zero. Easy!
llvm-svn: 112664