If we happen to have the same div in two basic blocks,
and in one of those we also happen to have the rem part,
we'd match the div-rem pair, but the wrong ones.
So let's drop overly-ambiguous assert.
Fixes https://bugs.llvm.org/show_bug.cgi?id=43500
llvm-svn: 373167
The static analyzer is warning about a potential null dereference, but we should be able to use cast<StructType> directly and if not assert will fire for us.
llvm-svn: 373095
Summary:
This patch extends the current capabilities in loop fusion to fuse guarded loops
(as defined in https://reviews.llvm.org/D63885). The patch adds the necessary
safety checks to ensure that it safe to fuse the guarded loops (control flow
equivalent, no intervening code, and same guard conditions). It also provides an
alternative method to perform the actual fusion of guarded loops. The mechanics
to fuse guarded loops are slightly different then fusing non-guarded loops, so I
opted to keep them separate methods. I will be cleaning this up in later
patches, and hope to converge on a single method to fuse both guarded and
non-guarded loops, but for now I think the review will be easier to keep them
separate.
Reviewers: jdoerfert, Meinersbur, dmgreen, etiotto, Whitney
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65464
llvm-svn: 373018
For a runtime loop if we can compute its trip count upperbound:
Don't unroll if:
1. loop is not guaranteed to run either zero or upperbound iterations; and
2. trip count upperbound is less than UnrollMaxUpperBound
Unless user or TTI asked to do so.
If unrolling, limit unroll factor to loop's trip count upperbound.
Differential Revision: https://reviews.llvm.org/D62989
Change-Id: I6083c46a9d98b2e22cd855e60523fdc5a4929c73
llvm-svn: 373017
For large functions, verifying the whole function after each loop takes
non-linear time.
Differential Revision: https://reviews.llvm.org/D67571
llvm-svn: 372924
While Promoting alloca instruction of Vector Type,
Check total size in bits of its slices too.
If they don't match, don't promote the alloca instruction.
Bug : https://bugs.llvm.org/show_bug.cgi?id=42585
llvm-svn: 372480
Summary:
FlattenCFG may erase unnecessary blocks, which also invalidates iterators to those erased blocks.
Before this patch, `iterativelyFlattenCFG` could try to increment a BB iterator after that BB has been removed and crash.
This patch makes FlattenCFGPass use `WeakVH` to skip over erased blocks.
Reviewers: dblaikie, tstellar, davide, sanjoy, asbirlea, grosser
Reviewed By: asbirlea
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67672
llvm-svn: 372347
In the example from:
https://bugs.llvm.org/show_bug.cgi?id=38502
...we hit infinite looping/crashing because we have non-standard IR -
an instruction operand is used before defined.
This and other unusual constructs are allowed in unreachable blocks,
so avoid the problem by using DominatorTree to step around landmines.
Differential Revision: https://reviews.llvm.org/D67766
llvm-svn: 372339
Add an ability to specify the max full unroll count for LoopUnrollPass pass
in pass options.
Reviewers: fhahn, fedor.sergeev
Reviewed By: fedor.sergeev
Subscribers: hiraditya, zzheng, dmgreen, llvm-commits
Differential Revision: https://reviews.llvm.org/D67701
llvm-svn: 372305
We use `< UP.Threshold` later on, so we should use LoopSize + 1, to
allow unrolling if the result won't exceed to loop size.
Fixes PR43305.
Reviewers: efriedma, dmgreen, paquette
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D67594
llvm-svn: 372084
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371635
This reverts commit r371584. It introduced a dependency from compiler-rt
to llvm/include/ADT, which is problematic for multiple reasons.
One is that it is a novel dependency edge, which needs cross-compliation
machinery for llvm/include/ADT (yes, it is true that right now
compiler-rt included only header-only libraries, however, if we allow
compiler-rt to depend on anything from ADT, other libraries will
eventually get used).
Secondly, depending on ADT from compiler-rt exposes ADT symbols from
compiler-rt, which would cause ODR violations when Clang is built with
the profile library.
llvm-svn: 371598
Currently we only rely on the induction increment to come before the
condition to ensure the required instructions get moved to the new
latch.
This patch duplicates and moves the required instructions to the
newly created latch. We move the condition to the end of the new block,
then process its operands. We stop at operands that are defined
outside the loop, or are the induction PHI.
We duplicate the instructions and update the uses in the moved
instructions, to ensure other users remain intact. See the added
test2 for such an example.
Reviewers: efriedma, mcrosier
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D67367
llvm-svn: 371595
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371584
This patch contains the basic functionality for reporting potentially
incorrect usage of __builtin_expect() by comparing the developer's
annotation against a collected PGO profile. A more detailed proposal and
discussion appears on the CFE-dev mailing list
(http://lists.llvm.org/pipermail/cfe-dev/2019-July/062971.html) and a
prototype of the initial frontend changes appear here in D65300
We revised the work in D65300 by moving the misexpect check into the
LLVM backend, and adding support for IR and sampling based profiles, in
addition to frontend instrumentation.
We add new misexpect metadata tags to those instructions directly
influenced by the llvm.expect intrinsic (branch, switch, and select)
when lowering the intrinsics. The misexpect metadata contains
information about the expected target of the intrinsic so that we can
check against the correct PGO counter when emitting diagnostics, and the
compiler's values for the LikelyBranchWeight and UnlikelyBranchWeight.
We use these branch weight values to determine when to emit the
diagnostic to the user.
A future patch should address the comment at the top of
LowerExpectIntrisic.cpp to hoist the LikelyBranchWeight and
UnlikelyBranchWeight values into a shared space that can be accessed
outside of the LowerExpectIntrinsic pass. Once that is done, the
misexpect metadata can be updated to be smaller.
In the long term, it is possible to reconstruct portions of the
misexpect metadata from the existing profile data. However, we have
avoided this to keep the code simple, and because some kind of metadata
tag will be required to identify which branch/switch/select instructions
are influenced by the use of llvm.expect
Patch By: paulkirth
Differential Revision: https://reviews.llvm.org/D66324
llvm-svn: 371484
Summary:
This is the first change to enable the TLI to be built per-function so
that -fno-builtin* handling can be migrated to use function attributes.
See discussion on D61634 for background. This is an enabler for fixing
handling of these options for LTO, for example.
This change should not affect behavior, as the provided function is not
yet used to build a specifically per-function TLI, but rather enables
that migration.
Most of the changes were very mechanical, e.g. passing a Function to the
legacy analysis pass's getTLI interface, or in Module level cases,
adding a callback. This is similar to the way the per-function TTI
analysis works.
There was one place where we were looking for builtins but not in the
context of a specific function. See FindCXAAtExit in
lib/Transforms/IPO/GlobalOpt.cpp. I'm somewhat concerned my workaround
could provide the wrong behavior in some corner cases. Suggestions
welcome.
Reviewers: chandlerc, hfinkel
Subscribers: arsenm, dschuff, jvesely, nhaehnle, mehdi_amini, javed.absar, sbc100, jgravelle-google, eraman, aheejin, steven_wu, george.burgess.iv, dexonsmith, jfb, asbirlea, gchatelet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66428
llvm-svn: 371284
If we have:
bb5:
br i1 %arg3, label %bb6, label %bb7
bb6:
%tmp = getelementptr inbounds i32, i32* %arg1, i64 2
store i32 3, i32* %tmp, align 4
br label %bb9
bb7:
%tmp8 = getelementptr inbounds i32, i32* %arg1, i64 2
store i32 3, i32* %tmp8, align 4
br label %bb9
bb9: ; preds = %bb4, %bb6, %bb7
...
We can't sink stores directly into bb9.
This patch creates new BB that is successor of %bb6 and %bb7
and sinks stores into that block.
SplitFooterBB is the parameter to the pass that controls
that behavior.
Change-Id: I7fdf50a772b84633e4b1b860e905bf7e3e29940f
Differential: https://reviews.llvm.org/D66234
llvm-svn: 371089
When I dug into this, it turns out to be *much* more involved than I'd realized and doesn't actually simplify anything.
The general purpose of the leader table is that we want to find the most-dominating definition quickly. The problem for equivalance folding is slightly different; we want to find the most dominating *value* whose definition block dominates our use quickly.
To make this change, we'd end up having to restructure the leader table (either the sorting thereof, or maybe even introducing multiple leader tables per value) and that complexity is just not worth it.
llvm-svn: 370824
This extends the existing logic for propagating constant expressions in an analogous manner for what we do across basic blocks. The core point is that we chose some order of operands, and canonicalize uses towards that one.
The heuristic used is inspired by the one used across blocks; in a follow up change, I'd plan to common them so that the cross block version uses the slightly stronger ordering herein.
As noted by the TODOs in the code, there's a good amount of room for improving the existing code and making it more powerful. Some follow up work planned.
Differential Revision: https://reviews.llvm.org/D66977
llvm-svn: 370791
Use a { iN undef, i1 false } struct as the base, and only insert
the first operand, instead of using { iN undef, i1 undef } as the
base and inserting both. This is the same as what we do in InstCombine.
Differential Revision: https://reviews.llvm.org/D67034
llvm-svn: 370573
This is an updated version of https://reviews.llvm.org/D66909 to fix PR42605.
Basically, current phi translatation translates an old value number to an new
value number for a call instruction based on the literal equality of call
expression, without verifying there is no clobber in between. This is incorrect.
To get a finegrain check, use MachineDependence analysis to do the job. However,
this is still not ideal. Although given a call instruction,
`MemoryDependenceResults::getCallDependencyFrom` returns identical call
instructions without clobber in between using MemDepResult with its DepType to
be `Def`. However, identical is too strict here and we want it to be relaxed a
little to consider phi-translation -- callee is the same, param operands can be
different. That means changing the semantic of `MemDepResult::Def` and I don't
know the potential impact.
So currently the patch is still conservative to only handle
MemDepResult::NonFuncLocal, which means the current call has no function local
clobber. If there is clobber, even if the clobber doesn't stand in between the
current call and the call with the new value, we won't do phi-translate.
Differential Revision: https://reviews.llvm.org/D67013
llvm-svn: 370547
Summary:
@mclow.lists brought up this issue up in IRC.
It is a reasonably common problem to compare some two values for equality.
Those may be just some integers, strings or arrays of integers.
In C, there is `memcmp()`, `bcmp()` functions.
In C++, there exists `std::equal()` algorithm.
One can also write that function manually.
libstdc++'s `std::equal()` is specialized to directly call `memcmp()` for
various types, but not `std::byte` from C++2a. https://godbolt.org/z/mx2ejJ
libc++ does not do anything like that, it simply relies on simple C++'s
`operator==()`. https://godbolt.org/z/er0Zwf (GOOD!)
So likely, there exists a certain performance opportunities.
Let's compare performance of naive `std::equal()` (no `memcmp()`) with one that
is using `memcmp()` (in this case, compiled with modified compiler). {F8768213}
```
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <iterator>
#include <limits>
#include <random>
#include <type_traits>
#include <utility>
#include <vector>
#include "benchmark/benchmark.h"
template <class T>
bool equal(T* a, T* a_end, T* b) noexcept {
for (; a != a_end; ++a, ++b) {
if (*a != *b) return false;
}
return true;
}
template <typename T>
std::vector<T> getVectorOfRandomNumbers(size_t count) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<T> dis(std::numeric_limits<T>::min(),
std::numeric_limits<T>::max());
std::vector<T> v;
v.reserve(count);
std::generate_n(std::back_inserter(v), count,
[&dis, &gen]() { return dis(gen); });
assert(v.size() == count);
return v;
}
struct Identical {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
auto Tmp = getVectorOfRandomNumbers<T>(count);
return std::make_pair(Tmp, std::move(Tmp));
}
};
struct InequalHalfway {
template <typename T>
static std::pair<std::vector<T>, std::vector<T>> Gen(size_t count) {
auto V0 = getVectorOfRandomNumbers<T>(count);
auto V1 = V0;
V1[V1.size() / size_t(2)]++; // just change the value.
return std::make_pair(std::move(V0), std::move(V1));
}
};
template <class T, class Gen>
void BM_bcmp(benchmark::State& state) {
const size_t Length = state.range(0);
const std::pair<std::vector<T>, std::vector<T>> Data =
Gen::template Gen<T>(Length);
const std::vector<T>& a = Data.first;
const std::vector<T>& b = Data.second;
assert(a.size() == Length && b.size() == a.size());
benchmark::ClobberMemory();
benchmark::DoNotOptimize(a);
benchmark::DoNotOptimize(a.data());
benchmark::DoNotOptimize(b);
benchmark::DoNotOptimize(b.data());
for (auto _ : state) {
const bool is_equal = equal(a.data(), a.data() + a.size(), b.data());
benchmark::DoNotOptimize(is_equal);
}
state.SetComplexityN(Length);
state.counters["eltcnt"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariant);
state.counters["eltcnt/sec"] =
benchmark::Counter(Length, benchmark::Counter::kIsIterationInvariantRate);
const size_t BytesRead = 2 * sizeof(T) * Length;
state.counters["bytes_read/iteration"] =
benchmark::Counter(BytesRead, benchmark::Counter::kDefaults,
benchmark::Counter::OneK::kIs1024);
state.counters["bytes_read/sec"] = benchmark::Counter(
BytesRead, benchmark::Counter::kIsIterationInvariantRate,
benchmark::Counter::OneK::kIs1024);
}
template <typename T>
static void CustomArguments(benchmark::internal::Benchmark* b) {
const size_t L2SizeBytes = []() {
for (const benchmark::CPUInfo::CacheInfo& I :
benchmark::CPUInfo::Get().caches) {
if (I.level == 2) return I.size;
}
return 0;
}();
// What is the largest range we can check to always fit within given L2 cache?
const size_t MaxLen = L2SizeBytes / /*total bufs*/ 2 /
/*maximal elt size*/ sizeof(T) / /*safety margin*/ 2;
b->RangeMultiplier(2)->Range(1, MaxLen)->Complexity(benchmark::oN);
}
BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, Identical)
->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, Identical)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, Identical)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, Identical)
->Apply(CustomArguments<uint64_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint8_t, InequalHalfway)
->Apply(CustomArguments<uint8_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint16_t, InequalHalfway)
->Apply(CustomArguments<uint16_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint32_t, InequalHalfway)
->Apply(CustomArguments<uint32_t>);
BENCHMARK_TEMPLATE(BM_bcmp, uint64_t, InequalHalfway)
->Apply(CustomArguments<uint64_t>);
```
{F8768210}
```
$ ~/src/googlebenchmark/tools/compare.py --no-utest benchmarks build-{old,new}/test/llvm-bcmp-bench
RUNNING: build-old/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpb6PEUx
2019-04-25 21:17:11
Running build-old/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 0.65, 3.90, 4.14
---------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000 432131 ns 432101 ns 1613 bytes_read/iteration=1000k bytes_read/sec=2.20706G/s eltcnt=825.856M eltcnt/sec=1.18491G/s
BM_bcmp<uint8_t, Identical>_BigO 0.86 N 0.86 N
BM_bcmp<uint8_t, Identical>_RMS 8 % 8 %
<...>
BM_bcmp<uint16_t, Identical>/256000 161408 ns 161409 ns 4027 bytes_read/iteration=1000k bytes_read/sec=5.90843G/s eltcnt=1030.91M eltcnt/sec=1.58603G/s
BM_bcmp<uint16_t, Identical>_BigO 0.67 N 0.67 N
BM_bcmp<uint16_t, Identical>_RMS 25 % 25 %
<...>
BM_bcmp<uint32_t, Identical>/128000 81497 ns 81488 ns 8415 bytes_read/iteration=1000k bytes_read/sec=11.7032G/s eltcnt=1077.12M eltcnt/sec=1.57078G/s
BM_bcmp<uint32_t, Identical>_BigO 0.71 N 0.71 N
BM_bcmp<uint32_t, Identical>_RMS 42 % 42 %
<...>
BM_bcmp<uint64_t, Identical>/64000 50138 ns 50138 ns 10909 bytes_read/iteration=1000k bytes_read/sec=19.0209G/s eltcnt=698.176M eltcnt/sec=1.27647G/s
BM_bcmp<uint64_t, Identical>_BigO 0.84 N 0.84 N
BM_bcmp<uint64_t, Identical>_RMS 27 % 27 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000 192405 ns 192392 ns 3638 bytes_read/iteration=1000k bytes_read/sec=4.95694G/s eltcnt=1.86266G eltcnt/sec=2.66124G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO 0.38 N 0.38 N
BM_bcmp<uint8_t, InequalHalfway>_RMS 3 % 3 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000 127858 ns 127860 ns 5477 bytes_read/iteration=1000k bytes_read/sec=7.45873G/s eltcnt=1.40211G eltcnt/sec=2.00219G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO 0.50 N 0.50 N
BM_bcmp<uint16_t, InequalHalfway>_RMS 0 % 0 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000 49140 ns 49140 ns 14281 bytes_read/iteration=1000k bytes_read/sec=19.4072G/s eltcnt=1.82797G eltcnt/sec=2.60478G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO 0.40 N 0.40 N
BM_bcmp<uint32_t, InequalHalfway>_RMS 18 % 18 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000 32101 ns 32099 ns 21786 bytes_read/iteration=1000k bytes_read/sec=29.7101G/s eltcnt=1.3943G eltcnt/sec=1.99381G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO 0.50 N 0.50 N
BM_bcmp<uint64_t, InequalHalfway>_RMS 1 % 1 %
RUNNING: build-new/test/llvm-bcmp-bench --benchmark_out=/tmp/tmpQ46PP0
2019-04-25 21:19:29
Running build-new/test/llvm-bcmp-bench
Run on (8 X 4000 MHz CPU s)
CPU Caches:
L1 Data 16K (x8)
L1 Instruction 64K (x4)
L2 Unified 2048K (x4)
L3 Unified 8192K (x1)
Load Average: 1.01, 2.85, 3.71
---------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations UserCounters...
---------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000 18593 ns 18590 ns 37565 bytes_read/iteration=1000k bytes_read/sec=51.2991G/s eltcnt=19.2333G eltcnt/sec=27.541G/s
BM_bcmp<uint8_t, Identical>_BigO 0.04 N 0.04 N
BM_bcmp<uint8_t, Identical>_RMS 37 % 37 %
<...>
BM_bcmp<uint16_t, Identical>/256000 18950 ns 18948 ns 37223 bytes_read/iteration=1000k bytes_read/sec=50.3324G/s eltcnt=9.52909G eltcnt/sec=13.511G/s
BM_bcmp<uint16_t, Identical>_BigO 0.08 N 0.08 N
BM_bcmp<uint16_t, Identical>_RMS 34 % 34 %
<...>
BM_bcmp<uint32_t, Identical>/128000 18627 ns 18627 ns 37895 bytes_read/iteration=1000k bytes_read/sec=51.198G/s eltcnt=4.85056G eltcnt/sec=6.87168G/s
BM_bcmp<uint32_t, Identical>_BigO 0.16 N 0.16 N
BM_bcmp<uint32_t, Identical>_RMS 35 % 35 %
<...>
BM_bcmp<uint64_t, Identical>/64000 18855 ns 18855 ns 37458 bytes_read/iteration=1000k bytes_read/sec=50.5791G/s eltcnt=2.39731G eltcnt/sec=3.3943G/s
BM_bcmp<uint64_t, Identical>_BigO 0.32 N 0.32 N
BM_bcmp<uint64_t, Identical>_RMS 33 % 33 %
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000 9570 ns 9569 ns 73500 bytes_read/iteration=1000k bytes_read/sec=99.6601G/s eltcnt=37.632G eltcnt/sec=53.5046G/s
BM_bcmp<uint8_t, InequalHalfway>_BigO 0.02 N 0.02 N
BM_bcmp<uint8_t, InequalHalfway>_RMS 29 % 29 %
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000 9547 ns 9547 ns 74343 bytes_read/iteration=1000k bytes_read/sec=99.8971G/s eltcnt=19.0318G eltcnt/sec=26.8159G/s
BM_bcmp<uint16_t, InequalHalfway>_BigO 0.04 N 0.04 N
BM_bcmp<uint16_t, InequalHalfway>_RMS 29 % 29 %
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000 9396 ns 9394 ns 73521 bytes_read/iteration=1000k bytes_read/sec=101.518G/s eltcnt=9.41069G eltcnt/sec=13.6255G/s
BM_bcmp<uint32_t, InequalHalfway>_BigO 0.08 N 0.08 N
BM_bcmp<uint32_t, InequalHalfway>_RMS 30 % 30 %
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000 9499 ns 9498 ns 73802 bytes_read/iteration=1000k bytes_read/sec=100.405G/s eltcnt=4.72333G eltcnt/sec=6.73808G/s
BM_bcmp<uint64_t, InequalHalfway>_BigO 0.16 N 0.16 N
BM_bcmp<uint64_t, InequalHalfway>_RMS 28 % 28 %
Comparing build-old/test/llvm-bcmp-bench to build-new/test/llvm-bcmp-bench
Benchmark Time CPU Time Old Time New CPU Old CPU New
---------------------------------------------------------------------------------------------------------------------------------------
<...>
BM_bcmp<uint8_t, Identical>/512000 -0.9570 -0.9570 432131 18593 432101 18590
<...>
BM_bcmp<uint16_t, Identical>/256000 -0.8826 -0.8826 161408 18950 161409 18948
<...>
BM_bcmp<uint32_t, Identical>/128000 -0.7714 -0.7714 81497 18627 81488 18627
<...>
BM_bcmp<uint64_t, Identical>/64000 -0.6239 -0.6239 50138 18855 50138 18855
<...>
BM_bcmp<uint8_t, InequalHalfway>/512000 -0.9503 -0.9503 192405 9570 192392 9569
<...>
BM_bcmp<uint16_t, InequalHalfway>/256000 -0.9253 -0.9253 127858 9547 127860 9547
<...>
BM_bcmp<uint32_t, InequalHalfway>/128000 -0.8088 -0.8088 49140 9396 49140 9394
<...>
BM_bcmp<uint64_t, InequalHalfway>/64000 -0.7041 -0.7041 32101 9499 32099 9498
```
What can we tell from the benchmark?
* Performance of naive equality check somewhat improves with element size,
maxing out at eltcnt/sec=1.58603G/s for uint16_t, or bytes_read/sec=19.0209G/s
for uint64_t. I think, that instability implies performance problems.
* Performance of `memcmp()`-aware benchmark always maxes out at around
bytes_read/sec=51.2991G/s for every type. That is 2.6x the throughput of the
naive variant!
* eltcnt/sec metric for the `memcmp()`-aware benchmark maxes out at
eltcnt/sec=27.541G/s for uint8_t (was: eltcnt/sec=1.18491G/s, so 24x) and
linearly decreases with element size.
For uint64_t, it's ~4x+ the elements/second.
* The call obvious is more pricey than the loop, with small element count.
As it can be seen from the full output {F8768210}, the `memcmp()` is almost
universally worse, independent of the element size (and thus buffer size) when
element count is less than 8.
So all in all, bcmp idiom does indeed pose untapped performance headroom.
This diff does implement said idiom recognition. I think a reasonable test
coverage is present, but do tell if there is anything obvious missing.
Now, quality. This does succeed to build and pass the test-suite, at least
without any non-bundled elements. {F8768216} {F8768217}
This transform fires 91 times:
```
$ /build/test-suite/utils/compare.py -m loop-idiom.NumBCmp result-new.json
Tests: 1149
Metric: loop-idiom.NumBCmp
Program result-new
MultiSourc...Benchmarks/7zip/7zip-benchmark 79.00
MultiSource/Applications/d/make_dparser 3.00
SingleSource/UnitTests/vla 2.00
MultiSource/Applications/Burg/burg 1.00
MultiSourc.../Applications/JM/lencod/lencod 1.00
MultiSource/Applications/lemon/lemon 1.00
MultiSource/Benchmarks/Bullet/bullet 1.00
MultiSourc...e/Benchmarks/MallocBench/gs/gs 1.00
MultiSourc...gs-C/TimberWolfMC/timberwolfmc 1.00
MultiSourc...Prolangs-C/simulator/simulator 1.00
```
The size changes are:
I'm not sure what's going on with SingleSource/UnitTests/vla.test yet, did not look.
```
$ /build/test-suite/utils/compare.py -m size..text result-{old,new}.json --filter-hash
Tests: 1149
Same hash: 907 (filtered out)
Remaining: 242
Metric: size..text
Program result-old result-new diff
test-suite...ingleSource/UnitTests/vla.test 753.00 833.00 10.6%
test-suite...marks/7zip/7zip-benchmark.test 1001697.00 966657.00 -3.5%
test-suite...ngs-C/simulator/simulator.test 32369.00 32321.00 -0.1%
test-suite...plications/d/make_dparser.test 89585.00 89505.00 -0.1%
test-suite...ce/Applications/Burg/burg.test 40817.00 40785.00 -0.1%
test-suite.../Applications/lemon/lemon.test 47281.00 47249.00 -0.1%
test-suite...TimberWolfMC/timberwolfmc.test 250065.00 250113.00 0.0%
test-suite...chmarks/MallocBench/gs/gs.test 149889.00 149873.00 -0.0%
test-suite...ications/JM/lencod/lencod.test 769585.00 769569.00 -0.0%
test-suite.../Benchmarks/Bullet/bullet.test 770049.00 770049.00 0.0%
test-suite...HMARK_ANISTROPIC_DIFFUSION/128 NaN NaN nan%
test-suite...HMARK_ANISTROPIC_DIFFUSION/256 NaN NaN nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/64 NaN NaN nan%
test-suite...CHMARK_ANISTROPIC_DIFFUSION/32 NaN NaN nan%
test-suite...ENCHMARK_BILATERAL_FILTER/64/4 NaN NaN nan%
Geomean difference nan%
result-old result-new diff
count 1.000000e+01 10.00000 10.000000
mean 3.152090e+05 311695.40000 0.006749
std 3.790398e+05 372091.42232 0.036605
min 7.530000e+02 833.00000 -0.034981
25% 4.243300e+04 42401.00000 -0.000866
50% 1.197370e+05 119689.00000 -0.000392
75% 6.397050e+05 639705.00000 -0.000005
max 1.001697e+06 966657.00000 0.106242
```
I don't have timings though.
And now to the code. The basic idea is to completely replace the whole loop.
If we can't fully kill it, don't transform.
I have left one or two comments in the code, so hopefully it can be understood.
Also, there is a few TODO's that i have left for follow-ups:
* widening of `memcmp()`/`bcmp()`
* step smaller than the comparison size
* Metadata propagation
* more than two blocks as long as there is still a single backedge?
* ???
Reviewers: reames, fhahn, mkazantsev, chandlerc, craig.topper, courbet
Reviewed By: courbet
Subscribers: hiraditya, xbolva00, nikic, jfb, gchatelet, courbet, llvm-commits, mclow.lists
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61144
llvm-svn: 370454
The code we had isSafeToLoadUnconditionally was blatantly wrong. This function takes a "Size" argument which is supposed to describe the span loaded from. Instead, the code use the size of the pointer passed (which may be unrelated!) and only checks that span. For any Size > LoadSize, this can and does lead to miscompiles.
Worse, the generic code just a few lines above correctly handles the cases which *are* valid. So, let's delete said code.
Removing this code revealed two issues:
1) As noted by jdoerfert the removed code incorrectly handled external globals. The test update in SROA is to stop testing incorrect behavior.
2) SROA was confusing bytes and bits, but this wasn't obvious as the Size parameter was being essentially ignored anyway. Fixed.
Differential Revision: https://reviews.llvm.org/D66778
llvm-svn: 370102
We were computing the loop exit value, but not ensuring the addrec belonged to the loop whose exit value we were computing. I couldn't actually trip this; the test case shows the basic setup which *might* trip this, but none of the variations I've tried actually do.
llvm-svn: 369730
The alignment is calculated incorrectly, thus sometimes it doesn't generate aligned mov instructions, as shown by the example below:
```
// b.cc
typedef long long index;
extern "C" index g_tid;
extern "C" index g_num;
void add3(float* __restrict__ a, float* __restrict__ b, float* __restrict__ c) {
index n = 64*1024;
index m = 16*1024;
index k = 4*1024;
index tid = g_tid;
index num = g_num;
__builtin_assume_aligned(a, 32);
__builtin_assume_aligned(b, 32);
__builtin_assume_aligned(c, 32);
for (index i0=tid*k; i0<m; i0+=num*k)
for (index i1=0; i1<n*m; i1+=m)
for (index i2=0; i2<k; i2++)
c[i1+i0+i2] = b[i0+i2] + a[i1+i0+i2];
}
```
Compile with `clang b.cc -Ofast -march=skylake -mavx2 -S`
```
vmovaps -224(%rdi,%rbx,4), %ymm0
vmovups -192(%rdi,%rbx,4), %ymm1 # should be movaps
vmovups -160(%rdi,%rbx,4), %ymm2 # should be movaps
vmovups -128(%rdi,%rbx,4), %ymm3 # should be movaps
vaddps -224(%rsi,%rbx,4), %ymm0, %ymm0
vaddps -192(%rsi,%rbx,4), %ymm1, %ymm1
vaddps -160(%rsi,%rbx,4), %ymm2, %ymm2
vaddps -128(%rsi,%rbx,4), %ymm3, %ymm3
vmovaps %ymm0, -224(%rdx,%rbx,4)
vmovups %ymm1, -192(%rdx,%rbx,4) # should be movaps
vmovups %ymm2, -160(%rdx,%rbx,4) # should be movaps
vmovups %ymm3, -128(%rdx,%rbx,4) # should be movaps
```
Differential Revision: https://reviews.llvm.org/D66575
Patch by Dun Liang
llvm-svn: 369723
Currently we do not properly translate addresses with PHIs if LoadBB !=
LI->getParent(), because PHITranslateAddr expects a direct predecessor as argument,
because it considers all instructions outside of the current block to
not requiring translation.
The amount of cases that trigger this should be very low, as most single
predecessor blocks should be folded into their predecessor by GVN before
we actually start with value numbering. It is still not guaranteed to
happen, so we should do PHI translation along all edges between the
loads' block and the predecessor where we have to place a load.
There are a few test cases showing current limits of the PHI translation, which
could be improved later.
Reviewers: spatel, reames, efriedma, john.brawn
Reviewed By: efriedma
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65020
llvm-svn: 369570
Summary:
Simplify the API using Optional<> and address comments in
https://reviews.llvm.org/D66165
Reviewers: vitalybuka
Subscribers: hiraditya, llvm-commits, ostannard, pcc
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66317
llvm-svn: 369300
Summary:
When inserting uses from outside the MemorySSA creation, we don't
normally need to rename uses, based on the assumption that there will be
no inserted Phis (if Def existed that required a Phi, that Phi already
exists). However, when dealing with unreachable blocks, MemorySSA will
optimize away Phis whose incoming blocks are unreachable, and these Phis end
up being re-added when inserting a Use.
There are two potential solutions here:
1. Analyze the inserted Phis and clean them up if they are unneeded
(current method for cleaning up trivial phis does not cover this)
2. Leave the Phi in place and rename uses, the same way as whe inserting
defs.
This patch use approach 2.
Resolves first test in PR42940.
Reviewers: george.burgess.iv
Subscribers: Prazek, sanjoy.google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66033
llvm-svn: 369291
This patch applies only to the new pass manager.
Currently, when MSSA Analysis is available, and pass to each loop pass, it will be preserved by that loop pass.
Hence, mark the analysis preserved based on that condition, vs the current `EnableMSSALoopDependency`. This leaves the global flag to affect only the entry point in the loop pass manager (in FunctionToLoopPassAdaptor).
llvm-svn: 369181