type of generated call to super dealloc is 'void'
and asserts if user's dealloc is not of 'void type.
This rule must be enforced in clang front-end (with a
fixit) if this is not the case, instead of asserting in CodeGen.
// rdar://11987838
llvm-svn: 160993
Also, fix a subtle bug, which occurred due to lookupPrivateMethod
defined in DeclObjC.h not looking up the method inside parent's
categories.
Note, the code assumes that Class's parent object has the same methods
as what's in the Root class of a the hierarchy, which is a heuristic
that might not hold for hierarchies which do not descend from NSObject.
Would be great to fix this in the future.
llvm-svn: 160885
While we still want to consider this a hard error (non-POD variadic args are
normally a DefaultError warning), delaying the diagnostic allows us to give
better error messages, which also match the usual non-POD errors more closely.
In addition, this change improves the diagnostic messages for format string
argument type mismatches by passing down the type of the callee, so we can
say "variadic method" or "variadic function" appropriately.
<rdar://problem/11825593>
llvm-svn: 160517
Previously, we would ask for the SourceLocation of an argument even if
it were NULL (i.e. if Sema resulted in an ExprError trying to build it).
<rdar://problem/11890818>
llvm-svn: 160515
Checks against nil often appear as guards in macros, and comparing
Objective-C literals to nil has well-defined behavior (if tautological).
On OS X, 'nil' has not been typed as 'id' since 10.6 (possibly earlier),
so the warning was already not firing, but other runtimes continue to use
((id)0) or some variant. This change accepts comparisons to any null pointer;
to keep it simple, it looks through all casts (not just casts to 'id').
PR13276
llvm-svn: 160379
Suggested by Ted, since string literal comparison is at least slightly more
sensible than comparison of runtime literals. (Ambiguous language on
developer.apple.com implies that strings are guaranteed to be uniqued within
a translation unit and possibly across a linked binary.)
llvm-svn: 160378
Recovering as if the user had actually called -isEqual: is a bit too far from
the semantics of the program as written, /even though/ it's probably what they
intended.
llvm-svn: 160377
Chris pointed out that while the comparison is certainly problematic
and does not have well-defined behavior, it isn't any worse than some
of the other abuses that we merely warn about and doesn't need to make
the compilation fail.
Revert the release notes change (r159766) now that this is just a new warning.
llvm-svn: 159939
c-functions declared in implementation should have their
parsing delayed until the end so, they can access forward
declared private methods. // rdar://10387088
llvm-svn: 159626
In C, enum constants have the type of the enum's underlying integer type,
rather than the type of the enum. (This is not true in C++.) Thus, when a
block's return type is inferred from an enum constant, it is incompatible
with expressions that return the enum type.
In r158899, I told block returns to pretend that enum constants have enum
type, like in C++. Doug Gregor pointed out that this can break existing code.
Now, we don't check the types of return statements until the end of the block.
This lets us go back and add implicit casts in blocks with mixed enum
constants and enum-typed expressions.
<rdar://problem/11662489> (again)
llvm-svn: 159591
In C, enum constants have the type of the enum's underlying integer type,
rather than the type of the enum. (This is not true in C++.) This leads to
odd warnings when returning enum constants directly in blocks with inferred
return types. The easiest way out of this is to pretend that, like C++, enum
constants have enum type when being returned from a block.
<rdar://problem/11662489>
llvm-svn: 158899
"write" attribute (copy/retain/etc.). But, property declaration in
primary class and protcols are tentative as they may be overridden
into a 'readwrite' property in class extensions. Postpone diagnosing
such warnings until the class implementation is seen.
// rdar://11656982
llvm-svn: 158869
target Objective-C runtime down to the frontend: break this
down into a single target runtime kind and version, and compute
all the relevant information from that. This makes it
relatively painless to add support for new runtimes to the
compiler. Make the new -cc1 flag, -fobjc-runtime=blah-x.y.z,
available at the driver level as a better and more general
alternative to -fgnu-runtime and -fnext-runtime. This new
concept of an Objective-C runtime also encompasses what we
were previously separating out as the "Objective-C ABI", so
fragile vs. non-fragile runtimes are now really modelled as
different kinds of runtime, paving the way for better overall
differentiation.
As a sort of special case, continue to accept the -cc1 flag
-fobjc-runtime-has-weak, as a sop to PLCompatibilityWeak.
I won't go so far as to say "no functionality change", even
ignoring the new driver flag, but subtle changes in driver
semantics are almost certainly not intended.
llvm-svn: 158793
name as an existing ivar since this is common source of error
when people remove @synthesize to take advantage of autosynthesis.
// rdar://11671080
llvm-svn: 158756
Objective-C literals conceptually always create new objects, but may be
optimized by the compiler or runtime (constant folding, singletons, etc).
Comparing addresses of these objects is relying on this optimization
behavior, which is really an implementation detail.
In the case of == and !=, offer a fixit to a call to -isEqual:, if the
method is available. This fixit is directly on the error so that it is
automatically applied.
Most of the time, this is really a newbie mistake, hence the fixit.
llvm-svn: 158230
This was a problem for people who write 'return(result);'
Also fix ARCMT's corresponding code, though there's no test case for this
because implicit casts like this are rejected by the migrator for being
ambiguous, and explicit casts have no problem.
<rdar://problem/11577346>
llvm-svn: 158130
Within the guts of CheckFormatHandler, the IsObjCLiteral flag was being used in
two ways: to see if null bytes were allowed, and to see if the '%@' specifier
is allowed.* The former usage has been changed to an explicit test and the
latter pushed down to CheckPrintfHandler and renamed ObjCContext, since it
applies to CFStrings as well.
* This also changes how wide chars are interpreted; in OS X Foundation, the
wide character type is 'unichar', a typedef for short, rather than wchar_t.
llvm-svn: 157968
getter result type is safe but does not match with property
type resulting in spurious warning followed by crash in
IRGen. // rdar://11515196
llvm-svn: 157641