(1) Removed \code.. \endcode tags around the instruction name. This matches the doxygen format for all other intrinsics.
(2) Did a better formatting for the comments (to fit into 80 columns more compactly).
llvm-svn: 267676
Since r265060 LLVM infers correct __nvvm_reflect attributes, so
explicit declaration of __nvvm_reflect() is no longer needed.
Differential Revision: http://reviews.llvm.org/D19074
llvm-svn: 267062
xmmintrin.h a bit more directed. If for whatever reason modules are enabled but
we textually include one of these headers, don't deploy the special case for
modules. To make this work cleanly, extend __building_module to be defined
even when modules is disabled.
llvm-svn: 266945
The doxygen comments are automatically generated based on Sony's intrinsics document.
I got an OK from Eric Christopher to commit doxygen comments without prior code review upstream. This patch was internally reviewed by Paul Robinson.
llvm-svn: 265844
Summary:
See comments in patch; we were assuming that some stdlib math functions
would be defined in namespace std, when in fact the spec says they
should be defined in the global namespace. libstdc++4.9 became more
conforming and broke us.
This new implementation seems to cover the known knowns.
Reviewers: rsmith
Subscribers: cfe-commits, tra
Differential Revision: http://reviews.llvm.org/D18882
llvm-svn: 265751
The module.modulemap file in the lib/Headers directory was missing the LLVM
copyright notice. This patch adds the copyright notice just like the rest of
the files in this directory.
Differential Revision: http://reviews.llvm.org/D18709
llvm-svn: 265325
Summary:
This is necessary for a future patch which will make all constexpr
functions implicitly host+device. cmath may declare constexpr
functions, but these we do *not* want to be host+device. The forward
declares added in this patch prevent this (because the rule will be,
constexpr functions become implicitly host+device unless they're
preceeded by a decl with __device__).
Reviewers: tra
Subscribers: cfe-commits, rnk, rsmith
Differential Revision: http://reviews.llvm.org/D18539
llvm-svn: 264963
Summary:
We decided this makes life too difficult for code authors. For example,
people may want to detect NVCC and disable variadic templates, which
NVCC does not support, but which we do.
Since people are going to have to change compiler flags *anyway* in
order to compile with clang, if they really want the old behavior, they
can pass -D__NVCC__.
Tested with tensorflow and thrust, no apparent problems.
Reviewers: tra
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D18417
llvm-svn: 264205
Only around 25% of the intrinsics in this file are documented here. The patches for the other half will be sent out later.
The doxygen comments are automatically generated based on Sony's intrinsics document.
I got an OK from Eric Christopher to commit doxygen comments without prior code review upstream.
llvm-svn: 263175
Only half of the intrinsics in this file is documented here. The patch for the other half will be sent out later.
The doxygen comments are automatically generated based on Sony's intrinsics document.
I got an OK from Eric Christopher to commit doxygen comments without prior code review upstream.
llvm-svn: 263098
Includes new built-in, conversion of built-in to target-independent intrinsic
and update in the header file. Tests are also updated. There is a second part in
the backend for which I will post a separate code-review. BACKEND PART SHOULD BE
COMMITTED FIRST.
Phabricator: http://reviews.llvm.org/D17816
llvm-svn: 263051
The doxygen comments are automatically generated based on Sony's intrinsics document.
I got an OK from Eric Christopher to commit doxygen comments without prior code review upstream.
llvm-svn: 262895
The doxygen comments are automatically generated based on Sony's intrinsics document.
I got an OK from Eric Christopher to commit doxygen comments without prior code review upstream.
llvm-svn: 262565
The doxygen comments are automatically generated based on Sony's intrinsics documentation.
Differential Revision: http://reviews.llvm.org/D17550
llvm-svn: 262385
Issue: https://llvm.org/bugs/show_bug.cgi?id=26720
Fix compile error when building ffmpeg for PowerPC64LE because of some
vec_vsx_ld/vec_vsx_st intrinsics are not supported by current clang.
New added intrinsics:
(vector) {signed|unsigned} {short|char} vec_vsx_ld: (total: 8)
bool vec_vsx_ld: (total: 1)
(vector) {signed|unsigned} {short|char} vec_vsx_st: (total: 8)
bool vec_vsx_st: (total: 1)
Total: 18 intrinsics
Phabricator: http://reviews.llvm.org/D17637
llvm-svn: 262359
Adds a number of constants, defined in the ARM EHABI spec, to the Clang
lib/Headers/unwind.h header. This is prerequisite for landing
http://reviews.llvm.org/D15781, as previously discussed there.
Patch by Timon Van Overveldt.
llvm-svn: 262178
Summary:
This lets you write, e.g.
uint3 a = threadIdx;
uint3 b = blockIdx;
dim3 c = gridDim;
dim3 d = blockDim;
which is legal in nvcc, but was not legal in clang.
The fact that e.g. the type of threadIdx is not actually uint3 is still
observable, but now you have to try to observe it.
Reviewers: tra
Subscribers: echristo, cfe-commits
Differential Revision: http://reviews.llvm.org/D17561
llvm-svn: 261777
Summary:
curand.h includes curand_mtgp32_kernel.h. In host mode, this header
redefines threadIdx and blockDim, giving them their "proper" types of
uint3 and dim3, respectively.
clang has its own plan for these variables -- their types are magic
builtin classes. So these redefinitions are incompatible.
As a hack, we force-include the offending CUDA header and use #defines
to get the right types for threadIdx and blockDim.
Reviewers: tra
Subscribers: echristo, cfe-commits
Differential Revision: http://reviews.llvm.org/D17562
llvm-svn: 261776
Fixing problem with the lib/include/avx512vlintrin.h file.
Adding one more _ to the prefix of _extension__ -> __extension__.
Differential Revision: http://reviews.llvm.org/D16985
llvm-svn: 261518
The doxygen comments are automatically generated based on Sony's intrinsics document.
Differential Revision: http://reviews.llvm.org/D16562
llvm-svn: 259275
CUDA expects math functions in std:: namespace to work on device side.
In order to make it work with clang without allowing device-side code
generation for functions w/o appropriate target attributes, this patch
provides device-side implementations for <cmath> functions. Most of
them call global-scope math functions provided by CUDA headers. In few
cases we use clang builtins.
Tested out-of tree by compiling and running thrust's unit_tests.
https://github.com/thrust/thrust/tree/master/testing
Differential Revision: http://reviews.llvm.org/D16593
llvm-svn: 258880
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"This is the way [autoconf] ends
Not with a bang but a whimper."
-T.S. Eliot
Reviewers: chandlerc, grosbach, bob.wilson, echristo
Subscribers: klimek, cfe-commits
Differential Revision: http://reviews.llvm.org/D16472
llvm-svn: 258862
The Intel manual documents both an unsigned form (_mm_popcnt_u32)
and a signed form (_popcnt32) of the intrinsic. Add the missing signed form.
Differential Revision: http://reviews.llvm.org/D15568
llvm-svn: 256121
* Pull in host-only implementations of few CUDA-specific math functions.
* #nclude <cmath> early to prevent its inclusion from CUDA headers after
they've messed with __THROW macro.
llvm-svn: 255933
Currently it's easy to break CUDA compilation by passing
"-isystem /path/to/cuda/include" to compiler which leads to
compiler including real cuda_runtime.h from there instead
of the wrapper we need.
Renaming the wrapper ensures that we can include the wrapper
regardless of user-specified include paths and files.
Differential Revision: http://reviews.llvm.org/D15534
llvm-svn: 255802
This more closely matches their locations as described by Intel
documentation, and lets us remove a pair of redundant typedefs.
Differential Revision: http://reviews.llvm.org/D15127
llvm-svn: 254528
Use undefined instead of setzero as the pass through input since its going to be fully overwritten. Use cmpeq of two zero vectors to produce the all 1s vector. Casting -1 to a double and vectorizing causes a constant load of a -1.0 floating point value.
llvm-svn: 254389
Header files that come with CUDA are assuming split host/device
compilation and are not usable by clang out of the box.
With a bit of preprocessor magic it's possible to twist them
into something clang can use.
This wrapper always includes CUDA headers exactly the same way during
host and device compilation passes and produces identical preprocessed
content during host and device side compilation for sm_35 GPUs. Device
compilation passes for older GPUs will see a smaller subset of device
functions supported by particular GPU.
The wrapper assumes specific contents of CUDA header files and works
only with CUDA 7.0 and 7.5.
Differential Revision: http://reviews.llvm.org/D13171
llvm-svn: 253388
The tzcnt intrinsics are used non non-BMI targets by code (e.g. ffmpeg)
that uses it as a potentially faster BSF.
The TZCNT instruction is special in that it's encoded in a
backward-compatible way and behaves as BSF on non-BMI targets.
Differential Revision: http://reviews.llvm.org/D14748
llvm-svn: 253358
These two intrinsics are defined in arm_acle.h.
__rev16l needs to rotate by 16 bits, bit it was actually rotating by 2 bits.
For AArch64, where long is 64 bits, this would still be wrong.
__rev16ll was incorrect, it reversed the bytes in each 32-bit word, rather than
each 16-bit halfword. The correct implementation is to apply __rev16 to the top
and bottom words of the 64-bit value.
For AArch32 targets, these get compiled down to the hardware rev16 instruction
at -O1 and above. For AArch64 targets, the 64-bit ones get compiled to two
32-bit rev16 instructions, because there is not currently a pattern for the
64-bit rev16 instruction.
Differential Revision: http://reviews.llvm.org/D14609
llvm-svn: 253211
only one of a group of possibilities.
This changes the syntax in the builtin files to represent:
, as the and operator
| as the or operator
The former syntax matches how the backend tablegen files represent
multiple subtarget features being required.
Updated the builtin and intrinsic headers accordingly for the new
syntax.
llvm-svn: 251388
According to the Intel documentation, the mask operand of a maskload and
maskstore intrinsics is always a vector of packed integer/long integer values.
This patch introduces the following two changes:
1. It fixes the avx maskload/store intrinsic definitions in avxintrin.h.
2. It changes BuiltinsX86.def to match the correct gcc definitions for avx
maskload/store (see D13861 for more details).
Differential Revision: http://reviews.llvm.org/D13861
llvm-svn: 250816
test that our intrinsics behave the same under -fsigned-char and
-funsigned-char.
This further testing uncovered that AVX-2 has a broken cmpgt for 8-bit
elements, and has for a long time. This is fixed in the same way as
SSE4 handles the case.
The other ISA extensions currently work correctly because they use
specific instruction intrinsics. As soon as they are rewritten in terms
of generic IR, they will need to add these special casts. I've added the
necessary testing to catch this however, so we shouldn't have to chase
it down again.
I considered changing the core typedef to be signed, but that seems like
a bad idea. Notably, it would be an ABI break if anyone is reaching into
the innards of the intrinsic headers and passing __v16qi on an API
boundary. I can't be completely confident that this wouldn't happen due
to a macro expanding in a lambda, etc., so it seems much better to leave
it alone. It also matches GCC's behavior exactly.
A fun side note is that for both GCC and Clang, -funsigned-char really
does change the semantics of __v16qi. To observe this, consider:
% cat x.cc
#include <smmintrin.h>
#include <iostream>
int main() {
__v16qi a = { 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
__v16qi b = _mm_set1_epi8(-1);
std::cout << (int)(a / b)[0] << ", " << (int)(a / b)[1] << '\n';
}
% clang++ -o x x.cc && ./x
-1, 1
% clang++ -funsigned-char -o x x.cc && ./x
0, 1
However, while this may be surprising, both Clang and GCC agree.
Differential Revision: http://reviews.llvm.org/D13324
llvm-svn: 249097
recently when we started using direct conversion to model sign
extension. The __v16qi type we use for SSE v16i8 vectors is defined in
terms of 'char' which may or may not be signed! This causes us to
generate pmovsx and pmovzx depending on the setting of -funsigned-char.
This patch just forms an explicitly signed type and uses that to
formulate the sign extension. While this gets the correct behavior
(which we now verify with the enhanced test) this is just the tip of the
ice berg. Now that I know what to look for, I have found errors of this
sort *throughout* our vector code. Fortunately, this is the only
specific place where I know of users actively having their code
miscompiled by Clang due to this, so I'm keeping the fix for those users
minimal and targeted.
I'll be sending a proper email for discussion of how to fix these
systematically, what the implications are, and just how widely broken
this is... From what I can tell, we have never shipped a correct set of
builtin headers for x86 when users rely on -funsigned-char. Oops.
llvm-svn: 248980
This patch corresponds to review:
http://reviews.llvm.org/D13190
Implemented the following interfaces to conform to ELF V2 ABI version 1.1.
vector signed __int128 vec_adde (vector signed __int128, vector signed __int128, vector signed __int128);
vector unsigned __int128 vec_adde (vector unsigned __int128, vector unsigned __int128, vector unsigned __int128);
vector signed __int128 vec_addec (vector signed __int128, vector signed __int128, vector signed __int128);
vector unsigned __int128 vec_addec (vector unsigned __int128, vector unsigned __int128, vector unsigned __int128);
vector signed int vec_addc(vector signed int __a, vector signed int __b);
vector bool char vec_cmpge (vector signed char __a, vector signed char __b);
vector bool char vec_cmpge (vector unsigned char __a, vector unsigned char __b);
vector bool short vec_cmpge (vector signed short __a, vector signed short __b);
vector bool short vec_cmpge (vector unsigned short __a, vector unsigned short __b);
vector bool int vec_cmpge (vector signed int __a, vector signed int __b);
vector bool int vec_cmpge (vector unsigned int __a, vector unsigned int __b);
vector bool char vec_cmple (vector signed char __a, vector signed char __b);
vector bool char vec_cmple (vector unsigned char __a, vector unsigned char __b);
vector bool short vec_cmple (vector signed short __a, vector signed short __b);
vector bool short vec_cmple (vector unsigned short __a, vector unsigned short __b);
vector bool int vec_cmple (vector signed int __a, vector signed int __b);
vector bool int vec_cmple (vector unsigned int __a, vector unsigned int __b);
vector double vec_double (vector signed long long __a);
vector double vec_double (vector unsigned long long __a);
vector bool char vec_eqv(vector bool char __a, vector bool char __b);
vector bool short vec_eqv(vector bool short __a, vector bool short __b);
vector bool int vec_eqv(vector bool int __a, vector bool int __b);
vector bool long long vec_eqv(vector bool long long __a, vector bool long long __b);
vector signed short vec_madd(vector signed short __a, vector signed short __b, vector signed short __c);
vector signed short vec_madd(vector signed short __a, vector unsigned short __b, vector unsigned short __c);
vector signed short vec_madd(vector unsigned short __a, vector signed short __b, vector signed short __c);
vector unsigned short vec_madd(vector unsigned short __a, vector unsigned short __b, vector unsigned short __c);
vector bool long long vec_mergeh(vector bool long long __a, vector bool long long __b);
vector bool long long vec_mergel(vector bool long long __a, vector bool long long __b);
vector bool char vec_nand(vector bool char __a, vector bool char __b);
vector bool short vec_nand(vector bool short __a, vector bool short __b);
vector bool int vec_nand(vector bool int __a, vector bool int __b);
vector bool long long vec_nand(vector bool long long __a, vector bool long long __b);
vector bool char vec_orc(vector bool char __a, vector bool char __b);
vector bool short vec_orc(vector bool short __a, vector bool short __b);
vector bool int vec_orc(vector bool int __a, vector bool int __b);
vector bool long long vec_orc(vector bool long long __a, vector bool long long __b);
vector signed long long vec_sub(vector signed long long __a, vector signed long long __b);
vector signed long long vec_sub(vector bool long long __a, vector signed long long __b);
vector signed long long vec_sub(vector signed long long __a, vector bool long long __b);
vector unsigned long long vec_sub(vector unsigned long long __a, vector unsigned long long __b);
vector unsigned long long vec_sub(vector bool long long __a, vector unsigned long long __b);
vector unsigned long long vec_sub(vector unsigned long long __V2 ABI V1.1
http://ror float vec_sub(vector float __a, vector float __b);
unsigned char vec_extract(vector bool char __a, int __b);
signed short vec_extract(vector signed short __a, int __b);
unsigned short vec_extract(vector bool short __a, int __b);
signed int vec_extract(vector signed int __a, int __b);
unsigned int vec_extract(vector bool int __a, int __b);
signed long long vec_extract(vector signed long long __a, int __b);
unsigned long long vec_extract(vector unsigned long long __a, int __b);
unsigned long long vec_extract(vector bool long long __a, int __b);
double vec_extract(vector double __a, int __b);
vector bool char vec_insert(unsigned char __a, vector bool char __b, int __c);
vector signed short vec_insert(signed short __a, vector signed short __b, int __c);
vector bool short vec_insert(unsigned short __a, vector bool short __b, int __c);
vector signed int vec_insert(signed int __a, vector signed int __b, int __c);
vector bool int vec_insert(unsigned int __a, vector bool int __b, int __c);
vector signed long long vec_insert(signed long long __a, vector signed long long __b, int __c);
vector unsigned long long vec_insert(unsigned long long __a, vector unsigned long long __b, int __c);
vector bool long long vec_insert(unsigned long long __a, vector bool long long __b, int __c);
vector double vec_insert(double __a, vector double __b, int __c);
vector signed long long vec_splats(signed long long __a);
vector unsigned long long vec_splats(unsigned long long __a);
vector signed __int128 vec_splats(signed __int128 __a);
vector unsigned __int128 vec_splats(unsigned __int128 __a);
vector double vec_splats(double __a);
int vec_all_eq(vector double __a, vector double __b);
int vec_all_ge(vector double __a, vector double __b);
int vec_all_gt(vector double __a, vector double __b);
int vec_all_le(vector double __a, vector double __b);
int vec_all_lt(vector double __a, vector double __b);
int vec_all_nan(vector double __a);
int vec_all_ne(vector double __a, vector double __b);
int vec_all_nge(vector double __a, vector double __b);
int vec_all_ngt(vector double __a, vector double __b);
int vec_any_eq(vector double __a, vector double __b);
int vec_any_ge(vector double __a, vector double __b);
int vec_any_gt(vector double __a, vector double __b);
int vec_any_le(vector double __a, vector double __b);
int vec_any_lt(vector double __a, vector double __b);
int vec_any_ne(vector double __a, vector double __b);
vector unsigned char vec_sbox_be (vector unsigned char);
vector unsigned char vec_cipher_be (vector unsigned char, vector unsigned char);
vector unsigned char vec_cipherlast_be (vector unsigned char, vector unsigned char);
vector unsigned char vec_ncipher_be (vector unsigned char, vector unsigned char);
vector unsigned char vec_ncipherlast_be (vector unsigned char, vector unsigned char);
vector unsigned int vec_shasigma_be (vector unsigned int, const int, const int);
vector unsigned long long vec_shasigma_be (vector unsigned long long, const int, const int);
vector unsigned short vec_pmsum_be (vector unsigned char, vector unsigned char);
vector unsigned int vec_pmsum_be (vector unsigned short, vector unsigned short);
vector unsigned long long vec_pmsum_be (vector unsigned int, vector unsigned int);
vector unsigned __int128 vec_pmsum_be (vector unsigned long long, vector unsigned long long);
vector unsigned char vec_gb (vector unsigned char);
vector unsigned long long vec_bperm (vector unsigned __int128 __a, vector unsigned char __b);
Removed the folowing interfaces either because their signatures have changed
in version 1.1 of the ABI or because they were implemented for ELF V2 ABI but
have actually been deprecated in version 1.1.
vector signed char vec_eqv(vector bool char __a, vector signed char __b);
vector signed char vec_eqv(vector signed char __a, vector bool char __b);
vector unsigned char vec_eqv(vector bool char __a, vector unsigned char __b);
vector unsigned char vec_eqv(vector unsigned char __a, vector bool char __b);
vector signed short vec_eqv(vector bool short __a, vector signed short __b);
vector signed short vec_eqv(vector signed short __a, vector bool short __b);
vector unsigned short vec_eqv(vector bool short __a, vector unsigned short __b);
vector unsigned short vec_eqv(vector unsigned short __a, vector bool short __b);
vector signed int vec_eqv(vector bool int __a, vector signed int __b);
vector signed int vec_eqv(vector signed int __a, vector bool int __b);
vector unsigned int vec_eqv(vector bool int __a, vector unsigned int __b);
vector unsigned int vec_eqv(vector unsigned int __a, vector bool int __b);
vector signed long long vec_eqv(vector bool long long __a, vector signed long long __b);
vector signed long long vec_eqv(vector signed long long __a, vector bool long long __b);
vector unsigned long long vec_eqv(vector bool long long __a, vector unsigned long long __b);
vector unsigned long long vec_eqv(vector unsigned long long __a, vector bool long long __b);
vector float vec_eqv(vector bool int __a, vector float __b);
vector float vec_eqv(vector float __a, vector bool int __b);
vector double vec_eqv(vector bool long long __a, vector double __b);
vector double vec_eqv(vector double __a, vector bool long long __b);
vector unsigned short vec_nand(vector bool short __a, vector unsigned short __b);
llvm-svn: 248813
Before, clang's internal assembler would reject the inline asm in clang's
Intrin.h. To make sure this doesn't happen for other Intrin.h functions using
__asm__ blocks, add 32-bit and 64-bit codegen tests for Intrin.h.
Sadly, these tests discovered that __readcr3 and __writecr3 have bad
implementations in 64-bit builds. This will have to be fixed in a follow-up.
llvm-svn: 248234
128-bit vector integer sign extensions correctly lower to the pmovsx instructions even for debug builds.
This patch removes the builtins and reimplements the _mm_cvtepi*_epi* intrinsics __using builtin_shufflevector (to extract the bottom most subvector) and __builtin_convertvector (to actually perform the sign extension).
Differential Revision: http://reviews.llvm.org/D12835
llvm-svn: 248092
convert i64 to FP and vice versa
reduceps & reducepd
rangeps & rangepd
all in their 512bit versions
Differential Revision: http://reviews.llvm.org/D11716
llvm-svn: 247881
As discussed in PR23648 - the intrinsics _m_from_int, _m_to_int and _m_prefetch are defined in mmintrin.h and prfchwintrin.h so we don't need to in Intrin.h
Added tests for _m_from_int and _m_to_int
D11338 already added a test for _m_prefetch
Differential Revision: http://reviews.llvm.org/D12272
llvm-svn: 245975
_rotl, _rotwl and _lrotl (and their right-shift counterparts) are official x86
intrinsics, and should be supported regardless of environment. This is in contrast
to _rotl8, _rotl16, and _rotl64 which are MS-specific.
Note that the MS documentation for _lrotl is different from the Intel
documentation. Intel explicitly documents it as a 64-bit rotate, while for MS,
since sizeof(unsigned long) for MSVC is always 4, a 32-bit rotate is implied.
Differential Revision: http://reviews.llvm.org/D12271
llvm-svn: 245923
This lets us optimize them better. We agreed to remove the intrinsics,
instead of combining them later, as, at -O0, we generate the expected
instructions. Plus, it's a nice cleanup.
Differential Revision: http://reviews.llvm.org/D10556
llvm-svn: 245605
This patch adds support for the System Z vector built-in functions.
The API-defined header file has the name vecintrin.h.
The user-level functions are defined in the same style as the clang
version of altivec.h, making heavy use of the __overloadable__ and
__always_inline__ attributes. Where possible the functions expand to
generic operations rather than specific built-in functions, in the hope
that that form can be optimised better.
Where a built-in routine is specified to require an immediate integer
argument, the __enable_if__ attribute is used to verify the argument is
in fact constant and in the appropriate range.
Based on a patch by Richard Sandiford.
llvm-svn: 243643
The 3DNOW/PRFCHW cpu targets define both the PREFETCHW (set cache line modified) and PREFETCH (set cache line exclusive) instructions but only the _m_prefetchw (PREFETCHW) intrinsic is included in the header. This patch adds the missing _m_prefetch intrinsic.
I'm basing this off AMD documentation - the intel docs on the support for PREFETCHW isn't clear whether Silvermont/Broadwell properly support PREFETCH but given that the intrinsic implementation is a default __builtin_prefetch call, it is safe whatever.
Fix for PR23648
Differential Revision: http://reviews.llvm.org/D11338
llvm-svn: 243305
_ReadBarrier, _WriteBarrier, and _ReadWriteBarrier are essentially
memory barriers of one form or another. Model these as
atomic_signal_fence(ATOMIC_SEQ_CST).
__faststorefence is a curious intrinsic. It's single purpose seems to
an alternative to mfence when that instruction is slow. However, mfence
is not always slow and is, in general, preferable to a 'lock or'
sequence on certain CPUs. Give the compiler freedom to select the best
sequence to get a fence.
llvm-svn: 242378
The vec_sld interface provides access to the vsldoi instruction.
Unlike most of the vec_* interfaces, we do not attempt to change the
generated code for vec_sld based on the endian mode. It is too
difficult to correctly infer the desired semantics because of
different element types, and the corrected instruction sequence is
expensive, involving loading a permute control vector and performing a
generalized permute.
For GCC, this was implemented as "Don't touch the vec_sld"
implementation. When it came time for the LLVM implementation, I did
the same thing. However, this was hasty and incorrect. In LLVM's
version of altivec.h, vec_sld was previously defined in terms of the
vec_perm interface. Because vec_perm semantics are adjusted for
little endian, this means that leaving vec_sld untouched causes it to
generate something different for LE than for BE. Not good.
This patch adjusts the form of vec_perm that is used for vec_sld and
vec_vsldoi, effectively undoing the modifications so that the same
vsldoi instruction will be generated for both BE and LE.
There is an accompanying back-end patch to take care of some small
ripple effects caused by these changes.
llvm-svn: 242297
This patch corresponds to review:
http://reviews.llvm.org/D11184
A number of new interfaces for altivec.h (as mandated by the ABI):
vector float vec_cpsgn(vector float, vector float)
vector double vec_cpsgn(vector double, vector double)
vector double vec_or(vector bool long long, vector double)
vector double vec_or(vector double, vector bool long long)
vector double vec_re(vector double)
vector signed char vec_cntlz(vector signed char)
vector unsigned char vec_cntlz(vector unsigned char)
vector short vec_cntlz(vector short)
vector unsigned short vec_cntlz(vector unsigned short)
vector int vec_cntlz(vector int)
vector unsigned int vec_cntlz(vector unsigned int)
vector signed long long vec_cntlz(vector signed long long)
vector unsigned long long vec_cntlz(vector unsigned long long)
vector signed char vec_nand(vector bool signed char, vector signed char)
vector signed char vec_nand(vector signed char, vector bool signed char)
vector signed char vec_nand(vector signed char, vector signed char)
vector unsigned char vec_nand(vector bool unsigned char, vector unsigned char)
vector unsigned char vec_nand(vector unsigned char, vector bool unsigned char)
vector unsigned char vec_nand(vector unsigned char, vector unsigned char)
vector short vec_nand(vector bool short, vector short)
vector short vec_nand(vector short, vector bool short)
vector short vec_nand(vector short, vector short)
vector unsigned short vec_nand(vector bool unsigned short, vector unsigned short)
vector unsigned short vec_nand(vector unsigned short, vector bool unsigned short)
vector unsigned short vec_nand(vector unsigned short, vector unsigned short)
vector int vec_nand(vector bool int, vector int)
vector int vec_nand(vector int, vector bool int)
vector int vec_nand(vector int, vector int)
vector unsigned int vec_nand(vector bool unsigned int, vector unsigned int)
vector unsigned int vec_nand(vector unsigned int, vector bool unsigned int)
vector unsigned int vec_nand(vector unsigned int, vector unsigned int)
vector signed long long vec_nand(vector bool long long, vector signed long long)
vector signed long long vec_nand(vector signed long long, vector bool long long)
vector signed long long vec_nand(vector signed long long, vector signed long long)
vector unsigned long long vec_nand(vector bool long long, vector unsigned long long)
vector unsigned long long vec_nand(vector unsigned long long, vector bool long long)
vector unsigned long long vec_nand(vector unsigned long long, vector unsigned long long)
vector signed char vec_orc(vector bool signed char, vector signed char)
vector signed char vec_orc(vector signed char, vector bool signed char)
vector signed char vec_orc(vector signed char, vector signed char)
vector unsigned char vec_orc(vector bool unsigned char, vector unsigned char)
vector unsigned char vec_orc(vector unsigned char, vector bool unsigned char)
vector unsigned char vec_orc(vector unsigned char, vector unsigned char)
vector short vec_orc(vector bool short, vector short)
vector short vec_orc(vector short, vector bool short)
vector short vec_orc(vector short, vector short)
vector unsigned short vec_orc(vector bool unsigned short, vector unsigned short)
vector unsigned short vec_orc(vector unsigned short, vector bool unsigned short)
vector unsigned short vec_orc(vector unsigned short, vector unsigned short)
vector int vec_orc(vector bool int, vector int)
vector int vec_orc(vector int, vector bool int)
vector int vec_orc(vector int, vector int)
vector unsigned int vec_orc(vector bool unsigned int, vector unsigned int)
vector unsigned int vec_orc(vector unsigned int, vector bool unsigned int)
vector unsigned int vec_orc(vector unsigned int, vector unsigned int)
vector signed long long vec_orc(vector bool long long, vector signed long long)
vector signed long long vec_orc(vector signed long long, vector bool long long)
vector signed long long vec_orc(vector signed long long, vector signed long long)
vector unsigned long long vec_orc(vector bool long long, vector unsigned long long)
vector unsigned long long vec_orc(vector unsigned long long, vector bool long long)
vector unsigned long long vec_orc(vector unsigned long long, vector unsigned long long)
vector signed char vec_div(vector signed char, vector signed char)
vector unsigned char vec_div(vector unsigned char, vector unsigned char)
vector signed short vec_div(vector signed short, vector signed short)
vector unsigned short vec_div(vector unsigned short, vector unsigned short)
vector signed int vec_div(vector signed int, vector signed int)
vector unsigned int vec_div(vector unsigned int, vector unsigned int)
vector signed long long vec_div(vector signed long long, vector signed long long)
vector unsigned long long vec_div(vector unsigned long long, vector unsigned long long)
vector unsigned char vec_mul(vector unsigned char, vector unsigned char)
vector unsigned int vec_mul(vector unsigned int, vector unsigned int)
vector unsigned long long vec_mul(vector unsigned long long, vector unsigned long long)
vector unsigned short vec_mul(vector unsigned short, vector unsigned short)
vector signed char vec_mul(vector signed char, vector signed char)
vector signed int vec_mul(vector signed int, vector signed int)
vector signed long long vec_mul(vector signed long long, vector signed long long)
vector signed short vec_mul(vector signed short, vector signed short)
vector signed long long vec_mergeh(vector signed long long, vector signed long long)
vector signed long long vec_mergeh(vector signed long long, vector bool long long)
vector signed long long vec_mergeh(vector bool long long, vector signed long long)
vector unsigned long long vec_mergeh(vector unsigned long long, vector unsigned long long)
vector unsigned long long vec_mergeh(vector unsigned long long, vector bool long long)
vector unsigned long long vec_mergeh(vector bool long long, vector unsigned long long)
vector double vec_mergeh(vector double, vector double)
vector double vec_mergeh(vector double, vector bool long long)
vector double vec_mergeh(vector bool long long, vector double)
vector signed long long vec_mergel(vector signed long long, vector signed long long)
vector signed long long vec_mergel(vector signed long long, vector bool long long)
vector signed long long vec_mergel(vector bool long long, vector signed long long)
vector unsigned long long vec_mergel(vector unsigned long long, vector unsigned long long)
vector unsigned long long vec_mergel(vector unsigned long long, vector bool long long)
vector unsigned long long vec_mergel(vector bool long long, vector unsigned long long)
vector double vec_mergel(vector double, vector double)
vector double vec_mergel(vector double, vector bool long long)
vector double vec_mergel(vector bool long long, vector double)
vector signed int vec_pack(vector signed long long, vector signed long long)
vector unsigned int vec_pack(vector unsigned long long, vector unsigned long long)
vector bool int vec_pack(vector bool long long, vector bool long long)
llvm-svn: 242171
add 2 bit to ObjCOrBuiltinID (changed from 11bits to 13bits), see discussion in
Add new intrinsics support that already covered by the BE.
All the intrinsics are covered by tests
Differential Revision: http://reviews.llvm.org/D10893
llvm-svn: 242144