This moves the following classes from Core -> Utility.
ConstString
Error
RegularExpression
Stream
StreamString
The goal here is to get lldbUtility into a state where it has
no dependendencies except on itself and LLVM, so it can be the
starting point at which to start untangling LLDB's dependencies.
These are all low level and very widely used classes, and
previously lldbUtility had dependencies up to lldbCore in order
to use these classes. So moving then down to lldbUtility makes
sense from both the short term and long term perspective in
solving this problem.
Differential Revision: https://reviews.llvm.org/D29427
llvm-svn: 293941
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
Fix a bug where calling SBFrame::FindValue() would cause a copy of all variables in the block to be inserted in the frame's variable list, regardless of whether those same variables were there or not - which means one could end up with a frame with lots of duplicate copies of the same variables
llvm-svn: 201614
This commit changes the ${function.name-with-args} prompt keyword to also tackle structs
Previously, since aggregates have no values, this would show up as foo=(null)
This checkin changes that to instead print foo=(Foo at 0x123) (i.e. typename at address)
There are other potential choices here (summary, one-liner printout of all members, ...) and I would love to hear feedback about better options, if any
llvm-svn: 181462
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
Cleaned up the option parsing code to always pass around the short options as integers. Previously we cast this down to "char" and lost some information. I recently added an assert that would detect duplicate short character options which was firing during the test suite.
This fix does the following:
- make sure all short options are treated as "int"
- make sure that short options can be non-printable values when a short option is not required or when an option group is mixed into many commands and a short option is not desired
- fix the help printing to "do the right thing" in all cases. Previously if there were duplicate short character options, it would just not emit help for the duplicates
- fix option parsing when there are duplicates to parse options correctly. Previously the option parsing, when done for an OptionGroup, would just start parsing options incorrectly by omitting table entries and it would end up setting the wrong option value
llvm-svn: 169189
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
can too. So now the lldb_private::Variable class has support for this.
Variables now have support for having a basename ("i"), and a mangled name
("_ZN12_GLOBAL__N_11iE"), and a demangled name ("(anonymous namespace)::i").
Nowwhen searching for a variable by name, users might enter the fully qualified
name, or just the basename. So new test functions were added to the Variable
and Mangled classes as:
bool NameMatches (const ConstString &name);
bool NameMatches (const RegularExpression ®ex);
I also modified "ClangExpressionDeclMap::FindVariableInScope" to also search
for global variables that are not in the current file scope by first starting
with the current module, then moving on to all modules.
Fixed an issue in the DWARF parser that could cause a varaible to get parsed
more than once. Now, once we have parsed a VariableSP for a DIE, we cache
the result even if a variable wasn't made so we don't do any re-parsing. Some
DW_TAG_variable DIEs don't have locations, or are missing vital info that
stops a debugger from being able to display anything for it, we parse a NULL
variable shared pointer for these DIEs so we don't keep trying to reparse it.
llvm-svn: 119085
lldb_private::RegularExpression compiles and matches with:
size_t
RegularExpression::GetErrorAsCString (char *err_str,
size_t err_str_max_len) const;
Added the ability to search a variable list for variables whose names match
a regular expression:
size_t
VariableList::AppendVariablesIfUnique (const RegularExpression& regex,
VariableList &var_list,
size_t& total_matches);
Also added the ability to append a variable to a VariableList only if it is
not already in the list:
bool
VariableList::AddVariableIfUnique (const lldb::VariableSP &var_sp);
Cleaned up the "frame variable" command:
- Removed the "-n NAME" option as this is the default way for the command to
work.
- Enable uniqued regex searches on variable names by fixing the "--regex RE"
command to work correctly. It will match all variables that match any
regular expressions and only print each variable the first time it matches.
- Fixed the option type for the "--regex" command to by eArgTypeRegularExpression
instead of eArgTypeCount
llvm-svn: 116178
function statics, file globals and static variables) that a frame contains.
The StackFrame objects can give out ValueObjects instances for
each variable which allows us to track when a variable changes and doesn't
depend on variable names when getting value objects.
StackFrame::GetVariableList now takes a boolean to indicate if we want to
get the frame compile unit globals and static variables.
The value objects in the stack frames can now correctly track when they have
been modified. There are a few more tweaks needed to complete this work. The
biggest issue is when stepping creates partial stacks (just frame zero usually)
and causes previous stack frames not to match up with the current stack frames
because the previous frames only has frame zero. We don't really want to
require that all previous frames be complete since stepping often must check
stack frames to complete their jobs. I will fix this issue tomorrow.
llvm-svn: 112800