Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
This patch enables support for .f16x2 operations.
Added new register type Float16x2.
Added support for .f16x2 instructions.
Added handling of vectorized loads/stores of v2f16 values.
Differential Revision: https://reviews.llvm.org/D30057
Differential Revision: https://reviews.llvm.org/D30310
llvm-svn: 296032
Original code only used vector loads/stores for explicit vector arguments.
It could also do more loads/stores than necessary (e.g v5f32 would
touch 8 f32 values). Aggregate types were loaded one element at a time,
even the vectors contained within.
This change attempts to generalize (and simplify) parameter space
loads/stores so that vector loads/stores can be used more broadly.
Functionality of the patch has been verified by compiling thrust
test suite and manually checking the differences between PTX
generated by llvm with and without the patch.
General algorithm:
* ComputePTXValueVTs() flattens input/output argument into a flat list
of scalars to load/store and returns their types and offsets.
* VectorizePTXValueVTs() uses that data to create vectorization plan
which returns an array of flags marking boundaries of vectorized
load/stores. Scalars are represented as 1-element vectors.
* Code that generates loads/stores implements a simple state machine
that constructs a vector according to the plan.
Differential Revision: https://reviews.llvm.org/D30011
llvm-svn: 295784
x*rsqrt(x) returns NaN for x == 0, whereas 1/rsqrt(x) returns 0, as
desired.
Verified that the particular nvptx approximate instructions here do in
fact return 0 for x = 0.
llvm-svn: 293713
Summary:
This lets us lower to sqrt.approx and rsqrt.approx under more
circumstances.
* Now we emit sqrt.approx and rsqrt.approx for calls to @llvm.sqrt.f32,
when fast-math is enabled. Previously, we only would emit it for
calls to @llvm.nvvm.sqrt.f. (With this patch we no longer emit
sqrt.approx for calls to @llvm.nvvm.sqrt.f; we rely on intcombine to
simplify llvm.nvvm.sqrt.f into llvm.sqrt.f32.)
* Now we emit the ftz version of rsqrt.approx when ftz is enabled.
Previously, we only emitted rsqrt.approx when ftz was disabled.
Reviewers: hfinkel
Subscribers: llvm-commits, tra, jholewinski
Differential Revision: https://reviews.llvm.org/D28508
llvm-svn: 293605
Summary:
DADToDAG has access to TargetLowering, but not vice versa, so this is
the more general location for these functions.
NFC
Reviewers: tra
Subscribers: jholewinski, llvm-commits
Differential Revision: https://reviews.llvm.org/D28795
llvm-svn: 292693
There's no neg.f16 instruction, so negation has to
be done via subtraction from zero.
Differential Revision: https://reviews.llvm.org/D28876
llvm-svn: 292452
Summary:
This change also lets us use max.{s,u}16. There's a vague warning in a
test about this maybe being less efficient, but I could not come up with
a case where the resulting SASS (sm_35 or sm_60) was different with or
without max.{s,u}16. It's true that nvcc seems to emit only
max.{s,u}32, but even ptxas 7.0 seems to have no problem generating
efficient SASS from max.{s,u}16 (the casts up to i32 and back down to
i16 seem to be implicit and nops, happening via register aliasing).
In the absence of evidence, better to have fewer special cases, emit
more straightforward code, etc. In particular, if a new GPU has 16-bit
min/max instructions, we want to be able to use them.
Reviewers: tra
Subscribers: jholewinski, llvm-commits
Differential Revision: https://reviews.llvm.org/D28732
llvm-svn: 292304
Only scalar half-precision operations are supported at the moment.
- Adds general support for 'half' type in NVPTX.
- fp16 math operations are supported on sm_53+ GPUs only
(can be disabled with --nvptx-no-f16-math).
- Type conversions to/from fp16 are supported on all GPU variants.
- On GPU variants that do not have full fp16 support (or if it's disabled),
fp16 operations are promoted to fp32 and results are converted back
to fp16 for storage.
Differential Revision: https://reviews.llvm.org/D28540
llvm-svn: 291956
Previously we'd always lower @llvm.{sin,cos}.f32 to {sin.cos}.approx.f32
instruction even when unsafe FP math was not allowed.
Clang-generated IR is not affected by this as it uses precise sin/cos
from CUDA's libdevice when unsafe math is disabled.
Differential Revision: https://reviews.llvm.org/D28619
llvm-svn: 291936
Summary:
In isel, transform
Num % Den
into
Num - (Num / Den) * Den
if the result of Num / Den is already available.
Reviewers: tra
Subscribers: hfinkel, llvm-commits, jholewinski
Differential Revision: https://reviews.llvm.org/D26090
llvm-svn: 285461
These functions are about classifying a global which will actually be
emitted, so it does not make sense for them to take a GlobalValue which may
for example be an alias.
Change the Mach-O object writer and the Hexagon, Lanai and MIPS backends to
look through aliases before using TargetLoweringObjectFile interfaces. These
are functional changes but all appear to be bug fixes.
Differential Revision: https://reviews.llvm.org/D25917
llvm-svn: 285006
Summary: In getArgumentAlignment check if the ImmutableCallSite pointer CS is non-null before dereferencing. If CS is 0x0 fall back to the ABI type alignment else compute the alignment as before.
Reviewers: eliben, jpienaar
Subscribers: jlebar, vchuravy, cfe-commits, jholewinski
Differential Revision: https://reviews.llvm.org/D9168
llvm-svn: 282045
Summary:
An IR load can be invariant, dereferenceable, neither, or both. But
currently, MI's notion of invariance is IR-invariant &&
IR-dereferenceable.
This patch splits up the notions of invariance and dereferenceability at
the MI level. It's NFC, so adds some probably-unnecessary
"is-dereferenceable" checks, which we can remove later if desired.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D23371
llvm-svn: 281151
Summary:
Previously these only worked via NVPTX-specific intrinsics.
This change will allow us to convert these target-specific intrinsics
into the general LLVM versions, allowing existing LLVM passes to reason
about their behavior.
It also gets us some minor codegen improvements as-is, from situations
where we canonicalize code into one of these llvm intrinsics.
Reviewers: majnemer
Subscribers: llvm-commits, jholewinski, tra
Differential Revision: https://reviews.llvm.org/D24300
llvm-svn: 281092
The names of the tablegen defs now match the names of the ISD nodes.
This makes the world a slightly saner place, as previously "fround" matched
ISD::FP_ROUND and not ISD::FROUND.
Differential Revision: https://reviews.llvm.org/D23597
llvm-svn: 279129
Avoid unnecessary spills of byval arguments of device functions to
local space on SASS level and subsequent pointer conversion to generic
address space that follows. Instead, make a local copy in IR, provide
a way to access arguments directly, and let LLVM optimize the copy away
when possible.
Differential Review: https://reviews.llvm.org/D21421
llvm-svn: 276153
Taking address of a byval variable in PTX is legal, but currently runs
into miscompilation by ptxas on sm_50+ (NVIDIA issue 1789042).
Work around the issue by enforcing minimum alignment on byval arguments
of device functions.
The change is a no-op on SASS level for sm_3x where ptxas already aligns
local copy by at least 4.
Differential Revision: https://reviews.llvm.org/D22428
llvm-svn: 275893
Summary:
Instead, we take a single flags arg (a bitset).
Also add a default 0 alignment, and change the order of arguments so the
alignment comes before the flags.
This greatly simplifies many callsites, and fixes a bug in
AMDGPUISelLowering, wherein the order of the args to getLoad was
inverted. It also greatly simplifies the process of adding another flag
to getLoad.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, jyknight, dsanders, nemanjai, llvm-commits
Differential Revision: http://reviews.llvm.org/D22249
llvm-svn: 275592
Avoid unnecessary spills of such vars to local space on SASS level and
pointer space conversion.
Instead, make a local copy with appropriate addrspacecasts and let
LLVM optimize them away when possible.
This allows loading value of the argument using [symbol+offset]
instead of converting argument to general space pointer and using it
for indexing (which also implicitly converts param space pointer to
local space one on SASS level and triggers copying of argument into
local space in the process).
This reduces call overhead, uses less registers and reduces overall
SASS size by 2-4%.
Differential Review: http://reviews.llvm.org/D21421
llvm-svn: 273313
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
As suggested by clang-tidy's performance-unnecessary-copy-initialization.
This can easily hit lifetime issues, so I audited every change and ran the
tests under asan, which came back clean.
llvm-svn: 272126
Summary:
Previously, we were running afoul of the assertion
EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && "LowerCall emitted a value with the wrong type!"
in SelectionDAGBuilder.cpp when running the NVPTX/i8-param.ll test.
This is because our backend (for some reason) treats small return values
as i32, but it wasn't ever truncating the i32 back down to the expected
width in the DAG.
Unclear to me whether this fixes any actual bugs -- in this test, at
least, the generated code is unchanged.
Reviewers: jingyue
Subscribers: llvm-commits, tra, jholewinski
Differential Revision: http://reviews.llvm.org/D17872
llvm-svn: 265091
Summary:
Calls sometimes need to be convergent. This is already handled at the
LLVM IR level, but it also needs to be handled at the MI level.
Ideally we'd propagate convergence from instructions, down through the
selection DAG, and into MIs. But this is Hard, and would affect
optimizations in the SDNs -- right now only SDNs with two operands have
any flags at all.
Instead, here's a much simpler hack: Add new opcodes for NVPTX for
convergent calls, and generate these when lowering convergent LLVM
calls.
Reviewers: jholewinski
Subscribers: jholewinski, chandlerc, joker.eph, jhen, tra, llvm-commits
Differential Revision: http://reviews.llvm.org/D17423
llvm-svn: 262373
Summary:
Let NVPTX backend detect integer min and max patterns during isel and emit intrinsics that enable hardware support.
Reviewers: jholewinski, meheff, jingyue
Subscribers: arsenm, llvm-commits, meheff, jingyue, eliben, jholewinski
Differential Revision: http://reviews.llvm.org/D12377
llvm-svn: 246107
For NVPTX, try to use 32-bit division instead of 64-bit division when the dividend and divisor
fit in 32 bits. This speeds up some internal benchmarks significantly. The underlying reason
is that many index computations are carried out in 64-bits but never actually exceed the
capacity of a 32-bit word.
llvm-svn: 244684