- Some clients which used DOUT have moved to DEBUG. We are deprecating the
"magic" DOUT behavior which avoided calling printing functions when the
statement was disabled. In addition to being unnecessary magic, it had the
downside of leaving code in -Asserts builds, and of hiding potentially
unnecessary computations.
llvm-svn: 77019
This adds location info for all llvm_unreachable calls (which is a macro now) in
!NDEBUG builds.
In NDEBUG builds location info and the message is off (it only prints
"UREACHABLE executed").
llvm-svn: 75640
The register allocator, when it allocates a register to a virtual register defined by an implicit_def, can allocate any physical register without worrying about overlapping live ranges. It should mark all of operands of the said virtual register so later passes will do the right thing.
This is not the best solution. But it should be a lot less fragile to having the scavenger try to track what is defined by implicit_def.
llvm-svn: 74518
- Register allocator should resolve the second part of the hint (register number) before passing it to the target since it knows virtual register to physical register mapping.
- More fixes to get ARM load / store double word working.
llvm-svn: 73671
- Change register allocation hint to a pair of unsigned integers. The hint type is zero (which means prefer the register specified as second part of the pair) or entirely target dependent.
- Allow targets to specify alternative register allocation orders based on allocation hint.
Part 2.
- Use the register allocation hint system to implement more aggressive load / store multiple formation.
- Aggressively form LDRD / STRD. These are formed *before* register allocation. It has to be done this way to shorten live interval of base and offset registers. e.g.
v1025 = LDR v1024, 0
v1026 = LDR v1024, 0
=>
v1025,v1026 = LDRD v1024, 0
If this transformation isn't done before allocation, v1024 will overlap v1025 which means it more difficult to allocate a register pair.
- Even with the register allocation hint, it may not be possible to get the desired allocation. In that case, the post-allocation load / store multiple pass must fix the ldrd / strd instructions. They can either become ldm / stm instructions or back to a pair of ldr / str instructions.
This is work in progress, not yet enabled.
llvm-svn: 73381
VirtRegMap keeps track of allocations so it knows what's not used. As a horrible hack, the stack coloring can color spill slots with *free* registers. That is, it replace reload and spills with copies from and to the free register. It unfold instructions that load and store the spill slot and replace them with register using variants.
Not yet enabled. This is part 1. More coming.
llvm-svn: 70787
This fixes a very subtle bug. vr defined by an implicit_def is allowed overlap with any register since it doesn't actually modify anything. However, if it's used as a two-address use, its live range can be extended and it can be spilled. The spiller must take care not to emit a reload for the vn number that's defined by the implicit_def. This is both a correctness and performance issue.
llvm-svn: 69743
%reg1498<def> = MOV32rm %reg1024, 1, %reg0, 12, %reg0, Mem:LD(4,4) [sunkaddr39 + 0]
%reg1506<def> = MOV32rm %reg1024, 1, %reg0, 8, %reg0, Mem:LD(4,4) [sunkaddr42 + 0]
%reg1486<def> = MOV32rr %reg1506
%reg1486<def> = XOR32rr %reg1486, %reg1498, %EFLAGS<imp-def,dead>
%reg1510<def> = MOV32rm %reg1024, 1, %reg0, 4, %reg0, Mem:LD(4,4) [sunkaddr45 + 0]
=>
%reg1498<def> = MOV32rm %reg2036, 1, %reg0, 12, %reg0, Mem:LD(4,4) [sunkaddr39 + 0]
%reg1506<def> = MOV32rm %reg2037, 1, %reg0, 8, %reg0, Mem:LD(4,4) [sunkaddr42 + 0]
%reg1486<def> = MOV32rr %reg1506
%reg1486<def> = XOR32rr %reg1486, %reg1498, %EFLAGS<imp-def,dead>
%reg1510<def> = MOV32rm %reg2038, 1, %reg0, 4, %reg0, Mem:LD(4,4) [sunkaddr45 + 0]
From linearscan's point of view, each of reg2036, 2037, and 2038 are separate registers, each is "killed" after a single use. The reloaded register is available and it's often clobbered right away. e.g. In thise case reg1498 is allocated EAX while reg2036 is allocated RAX. This means we end up with multiple reloads from the same stack slot in the same basic block.
Now linearscan recognize there are other reloads from same SS in the same BB. So it'll "downgrade" RAX (and its aliases) after reg2036 is allocated until the next reload (reg2037) is done. This greatly increase the likihood reloads from SS are reused.
This speeds up sha1 from OpenSSL by 5.8%. It is also an across the board win for SPEC2000 and 2006.
llvm-svn: 69585
e.g. allocating for GR32, bh is not used, updating bl spill weight.
bl should get the same spill weight otherwise it will be choosen
as a spill candidate since spilling bh doesn't make ebx available.
This fix PR2866.
llvm-svn: 67574
instead of requiring all "short description" strings to begin with
two spaces. This makes these strings less mysterious, and it fixes
some cases where short description strings mistakenly did not
begin with two spaces.
llvm-svn: 57521
"If a re-materializable instruction has a register
operand, the spiller will change the register operand's
spill weight to HUGE_VAL to avoid it being spilled.
However, if the operand is already in the queue ready
to be spilled, avoid re-materializing it".
llvm-svn: 56837
RA problem by expanding the live interval of an
earlyclobber def back one slot. Remove
overlap-earlyclobber throughout. Remove
earlyclobber bits and their handling from
live internals.
llvm-svn: 56539
with an earlyclobber operand elsewhere. Propagate
this bit and the earlyclobber bit through SDISel.
Change linear-scan RA not to allocate regs in a way
that conflicts with an earlyclobber. See also comments.
llvm-svn: 56290