This was added to test that DW_AT_GNU_pubnames used sec_offset in DWARF4
and data4 in DWARF3 and below. Since then we've updated
DW_AT_GNU_pubnames to be a flag, rather than a section offset anyway.
Granted this still differs between DWARF 3 and DWARF 4
(FORM_flag_present versun FORM_flag) but it doesn't seem worthwhile
testing that codepath again here. It's covered adequately in many other
test cases.
And while I'm here, don't hardcode the byte size of the compile unit -
it's not relevant to this test and just makes it brittle if/when
anything changes in the way this CU is emitted.
llvm-svn: 210362
Summary:
We were being too strict and not accounting for undefs.
Added a test case and fixed another one where we improved codegen.
Reviewers: grosbach, nadav, delena
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4039
llvm-svn: 210361
We would previously fail to emit a definition of bar() for the following code:
struct __declspec(dllexport) S {
void foo() {
t->bar();
}
struct T {
void bar() {}
};
T *t;
};
Note that foo() is an exported method, but bar() is not. However, foo() refers
to bar() so we need to emit its definition. We would previously fail to
realise that bar() is used.
By deferring the method definitions until the end of the top level declaration,
we can simply call EmitTopLevelDecl on them and rely on the usual mechanisms
to decide whether the method should be emitted or not.
Differential Revision: http://reviews.llvm.org/D4038
llvm-svn: 210356
results in a template having too many arguments, but all the trailing arguments
are packs, that's OK if we have a partial pack substitution: the trailing pack
expansions may end up empty.
llvm-svn: 210350
The PowerPC vector-pack instructions are defined architecturally with
a big-endian bias, in that the vector element numbering is assumed to
be "left to right" regardless of whether the processor is in
big-endian or little-endian mode. This definition is unnatural for
little-endian code generation.
To facilitate ease of porting, the vec_pack and related interfaces are
designed to use natural element ordering, so that elements are
numbered according to little-endian design principles when code is
generated for a little-endian target. The vec_pack calls are
implemented as calls to vec_perm, specifying selection of the
odd-numbered vector elements. For little endian, this means the
odd-numbered elements counting from the right end of the register.
Since the underlying instructions count from the left end, we must
instead select the even-numbered vector elements for little endian to
achieve the desired semantics.
The correctness of this code is tested by the new pack.c test added in
a previous patch. I plan to later make the existing ppc32 Altivec
compile-time tests work for ppc64 and ppc64le as well.
llvm-svn: 210340
The PowerPC vector-multiply-even and vector-multiply-odd instructions
are defined architecturally with a big-endian bias, in that the vector
element numbering is assumed to be "left to right" regardless of
whether the processor is in big-endian or little-endian mode. This
definition is unnatural for little-endian code generation.
To facilitate ease of porting, the vec_mule and vec_mulo interfacs are
designed to use natural element ordering, so that elements are
numbered according to little-endian design principles when code is
generated for a little-endian target. The desired semantics can be
achieved by using the opposite instruction for little-endian mode.
That is, when a call to vec_mule appears in the code, a
vector-multiply-odd is generated, and when a call to vec_mulo appears
in the code, a vector-multiply-even is generated.
The correctness of this code is tested by the new mult-even-odd.c test
added in a previous patch. I plan to later make the existing ppc32
Altivec compile-time tests work for ppc64 and ppc64le as well.
llvm-svn: 210337
This patch fixes a couple of lowering issues for little endian
PowerPC. The code for lowering BUILD_VECTOR contains a number of
optimizations that are only valid for big endian. For now, we disable
those optimizations for correctness. In the future, we will add
analogous optimizations that are correct for little endian.
When lowering a SHUFFLE_VECTOR to a VPERM operation, we again need to
make the now-familiar transformation of swapping the input operands
and complementing the permute control vector. Correctness of this
transformation is tested by the accompanying test case.
llvm-svn: 210336
Before (JavaScript example, but can extend to other languages):
return {
a: 'E',
b: function() {
return function() {
f(); // This is wrong.
};
}
};
After:
return {
a: 'E',
b: function() {
return function() {
f(); // This is better.
};
}
};
llvm-svn: 210334
A leftover -S was generating unwanted output in the source tree overriding
-only flags that normally disable output.
This reverts commit r210323 and implements the proper fix.
Reported by Timur Iskhodzhanov!
llvm-svn: 210326
We probably just need to touch LLVM's configure this time to work around the
totally inadequate Makefile build server integration.
This reverts commit r210314.
llvm-svn: 210320
r210177 added lld Makefiles, r210245 added automatic build when the source is present.
This revision completes the set by adding the lld test and unittests to the check-all target.
llvm-svn: 210318
This will unbreak clang vendor builds as a follow-up to r210238, now that we
can't poke into LLVM's private config.h (nor should the string be exposed by
llvm-config.h).
This hopefully removes for good the last include of LLVM's config.h.
llvm-svn: 210313
The option check was being performed after config.h/llvm-config.h substitution,
generating incorrect macro definitions.
Fixes PR19614.
llvm-svn: 210311