This patch corresponds to review:
http://reviews.llvm.org/D10972
Fix for the handling of dependent features that are enabled by default
on some CPU's (such as -mvsx, -mpower8-vector).
Also provides a number of new interfaces or fixes existing ones in
altivec.h.
Changed signatures to conform to ABI:
vector short vec_perm(vector signed short, vector signed short, vector unsigned char)
vector int vec_perm(vector signed int, vector signed int, vector unsigned char)
vector long long vec_perm(vector signed long long, vector signed long long, vector unsigned char)
vector signed char vec_sld(vector signed char, vector signed char, const int)
vector unsigned char vec_sld(vector unsigned char, vector unsigned char, const int)
vector bool char vec_sld(vector bool char, vector bool char, const int)
vector unsigned short vec_sld(vector unsigned short, vector unsigned short, const int)
vector signed short vec_sld(vector signed short, vector signed short, const int)
vector signed int vec_sld(vector signed int, vector signed int, const int)
vector unsigned int vec_sld(vector unsigned int, vector unsigned int, const int)
vector float vec_sld(vector float, vector float, const int)
vector signed char vec_splat(vector signed char, const int)
vector unsigned char vec_splat(vector unsigned char, const int)
vector bool char vec_splat(vector bool char, const int)
vector signed short vec_splat(vector signed short, const int)
vector unsigned short vec_splat(vector unsigned short, const int)
vector bool short vec_splat(vector bool short, const int)
vector pixel vec_splat(vector pixel, const int)
vector signed int vec_splat(vector signed int, const int)
vector unsigned int vec_splat(vector unsigned int, const int)
vector bool int vec_splat(vector bool int, const int)
vector float vec_splat(vector float, const int)
Added a VSX path to:
vector float vec_round(vector float)
Added interfaces:
vector signed char vec_eqv(vector signed char, vector signed char)
vector signed char vec_eqv(vector bool char, vector signed char)
vector signed char vec_eqv(vector signed char, vector bool char)
vector unsigned char vec_eqv(vector unsigned char, vector unsigned char)
vector unsigned char vec_eqv(vector bool char, vector unsigned char)
vector unsigned char vec_eqv(vector unsigned char, vector bool char)
vector signed short vec_eqv(vector signed short, vector signed short)
vector signed short vec_eqv(vector bool short, vector signed short)
vector signed short vec_eqv(vector signed short, vector bool short)
vector unsigned short vec_eqv(vector unsigned short, vector unsigned short)
vector unsigned short vec_eqv(vector bool short, vector unsigned short)
vector unsigned short vec_eqv(vector unsigned short, vector bool short)
vector signed int vec_eqv(vector signed int, vector signed int)
vector signed int vec_eqv(vector bool int, vector signed int)
vector signed int vec_eqv(vector signed int, vector bool int)
vector unsigned int vec_eqv(vector unsigned int, vector unsigned int)
vector unsigned int vec_eqv(vector bool int, vector unsigned int)
vector unsigned int vec_eqv(vector unsigned int, vector bool int)
vector signed long long vec_eqv(vector signed long long, vector signed long long)
vector signed long long vec_eqv(vector bool long long, vector signed long long)
vector signed long long vec_eqv(vector signed long long, vector bool long long)
vector unsigned long long vec_eqv(vector unsigned long long, vector unsigned long long)
vector unsigned long long vec_eqv(vector bool long long, vector unsigned long long)
vector unsigned long long vec_eqv(vector unsigned long long, vector bool long long)
vector float vec_eqv(vector float, vector float)
vector float vec_eqv(vector bool int, vector float)
vector float vec_eqv(vector float, vector bool int)
vector double vec_eqv(vector double, vector double)
vector double vec_eqv(vector bool long long, vector double)
vector double vec_eqv(vector double, vector bool long long)
vector bool long long vec_perm(vector bool long long, vector bool long long, vector unsigned char)
vector double vec_round(vector double)
vector double vec_splat(vector double, const int)
vector bool long long vec_splat(vector bool long long, const int)
vector signed long long vec_splat(vector signed long long, const int)
vector unsigned long long vec_splat(vector unsigned long long,
vector bool int vec_sld(vector bool int, vector bool int, const int)
vector bool short vec_sld(vector bool short, vector bool short, const int)
llvm-svn: 241904
instructions introduced in POWER8.
These are the Clang-related changes for http://reviews.llvm.org/D10704
All builtins are added in altivec.h and guarded with the POWER8_VECTOR macro.
Phabricator review: http://reviews.llvm.org/D10736
llvm-svn: 241293
Add intrinsics for the FXSR instructions (FXSAVE/FXSAVE64/FXRSTOR/FXRSTOR64)
These were previously declared in Intrin.h for MSVC compatibility, but now
that we have them implemented, these declarations can be removed.
llvm-svn: 241053
This patch corresponds to review:
http://reviews.llvm.org/D10637
This is the first round of additions of missing builtins listed in the ABI document. More to come (this builds onto what seurer already addes). This patch adds:
vector signed long long vec_abs(vector signed long long)
vector double vec_abs(vector double)
vector signed long long vec_add(vector signed long long, vector signed long long)
vector unsigned long long vec_add(vector unsigned long long, vector unsigned long long)
vector double vec_add(vector double, vector double)
vector double vec_and(vector bool long long, vector double)
vector double vec_and(vector double, vector bool long long)
vector double vec_and(vector double, vector double)
vector signed long long vec_and(vector signed long long, vector signed long long)
vector double vec_andc(vector bool long long, vector double)
vector double vec_andc(vector double, vector bool long long)
vector double vec_andc(vector double, vector double)
vector signed long long vec_andc(vector signed long long, vector signed long long)
vector double vec_ceil(vector double)
vector bool long long vec_cmpeq(vector double, vector double)
vector bool long long vec_cmpge(vector double, vector double)
vector bool long long vec_cmpge(vector signed long long, vector signed long long)
vector bool long long vec_cmpge(vector unsigned long long, vector unsigned long long)
vector bool long long vec_cmpgt(vector double, vector double)
vector bool long long vec_cmple(vector double, vector double)
vector bool long long vec_cmple(vector signed long long, vector signed long long)
vector bool long long vec_cmple(vector unsigned long long, vector unsigned long long)
vector bool long long vec_cmplt(vector double, vector double)
vector bool long long vec_cmplt(vector signed long long, vector signed long long)
vector bool long long vec_cmplt(vector unsigned long long, vector unsigned long long)
llvm-svn: 240821
Before MSVS2015, MSVS's headers disagree about int32_t and PRIx32 and so on.
Provide a wrapper header to fix this, so that -Wformat can still be used.
Fixes PR23412.
llvm-svn: 240741
Ever since the target attributes change, we don't need to guard these
headers with `requires`. Actually it's a bit worse, because if we do
then they are included textually under the covers, causing declarations
to appear in submodules they aren't supposed to be in.
llvm-svn: 240720
This involved removing the conditional inclusion and replacing them
with target attributes matching the original conditional inclusion
and checks. The testcase update removes the macro checks for each
file and replaces them with usage of the __target__ attribute, e.g.:
int __attribute__((__target__(("sse3")))) foo(int a) {
_mm_mwait(0, 0);
return 4;
}
This usage does require the enclosing function have the requisite
__target__ attribute for inlining and code generation - also for
any macro intrinsic uses in the enclosing function. There's no change
for existing uses of the intrinsic headers.
llvm-svn: 239883
in section 10.1, __arm_{w,r}sr{,p,64}.
This includes arm_acle.h definitions with builtins and codegen to support
these, the intrinsics are implemented by generating read/write_register calls
which get appropriately lowered in the backend based on the register string
provided. SemaChecking is also implemented to fault invalid parameters.
Differential Revision: http://reviews.llvm.org/D9697
llvm-svn: 239737
This patch corresponds to review:
http://reviews.llvm.org/D10095
This is for just two instructions and related builtins:
vbpermq
vgbbd
llvm-svn: 239506
We would crash in the DeclPrinter trying to pretty-print the
static_assert message. C++1z-style assertions don't have a message so
we would crash.
This fixes PR23756.
llvm-svn: 239170
in POWER8.
These are the Clang-related changes for http://reviews.llvm.org/D9081
vadduqm
vaddeuqm
vaddcuq
vaddecuq
vsubuqm
vsubeuqm
vsubcuq
vsubecuq
All builtins are added in altivec.h, and guarded with the POWER8_VECTOR and
powerpc64 macros.
http://reviews.llvm.org/D9903
llvm-svn: 238145
This patch adds support for the following new instructions in the
Power ISA 2.07:
vpksdss
vpksdus
vpkudus
vpkudum
vupkhsw
vupklsw
These instructions are available through the vec_packs, vec_packsu,
vec_unpackh, and vec_unpackl built-in interfaces. These are
lane-sensitive instructions, so the built-ins have different
implementations for big- and little-endian, and the instructions must
be marked as killing the vector swap optimization for now.
The first three instructions perform saturating pack operations. The
fourth performs a modulo pack operation, which means it can be
represented with a vector shuffle, and conversely the appropriate
vector shuffles may cause this instruction to be generated. The other
instructions are only generated via built-in support for now.
I noticed during patch preparation that the macro __VSX__ was not
previously predefined when the power8-vector or direct-move features
are requested. This is an error, and I've corrected that here as
well.
Appropriate tests have been added.
There is a companion patch to llvm for the rest of this support.
llvm-svn: 237500
xmmintrin.h includes emmintrin.h and vice versa if SSE2 is enabled. We break
this cycle for a modules build, and instead make the xmmintrin.h module
re-export the immintrin.h module. Also included is a fix for an assert in the
serialization code if a module exports another module that was declared later
in the same module map.
llvm-svn: 237321
Added cuda_builtin_vars.h which implements built-in CUDA variables
using __declattr(property).
Fields of built-in variables (except for warpSize) are implemented
using __declattr(property) which replaces read/write of a member field
with a call to a getter/setter member function, in this case with
appropriate NVPTX builtin.
Added a test case to check diagnostics on attempt to construct or
improperly access a built-in variable.
Differential Revision: http://reviews.llvm.org/D9064
llvm-svn: 235448
Added cuda_builtin_vars.h which implements built-in CUDA variables
using __declattr(property).
Fields of built-in variables (except for warpSize) are implemented
using __declattr(property) which replaces read/write of a member field
with a call to a getter/setter member function, in this case with
appropriate NVPTX builtin.
Added a test case to check diagnostics on attempt to construct or
improperly access a built-in variable.
Differential Revision: http://reviews.llvm.org/D9064
llvm-svn: 235398
This should fix build-bot failures after r233804.
The patch also adds a "systemz" feature, and renames the
"transactional-execution" feature to "htm", since it turns
out "-" is not a legal character in module feature names.
llvm-svn: 233807
The zEC12 provides the transactional-execution facility. This is exposed
to users via a set of builtin routines on other compilers. This patch
adds clang support to enable those builtins. In partciular, the patch:
- enables the transactional-execution feature by default on zEC12
- allows to override presence of that feature via the -mhtm/-mno-htm options
- adds a predefined macro __HTM__ if the feature is enabled
- adds support for the transactional-execution GCC builtins
- adds Sema checking to verify the __builtin_tabort abort code
- adds the s390intrin.h header file (for GCC compatibility)
- adds s390 sections to the htmintrin.h and htmxlintrin.h header files
Since this is first use of target-specific intrinsics on the platform,
the patch creates the include/clang/Basic/BuiltinsSystemZ.def file and
hooks it up in TargetBuiltins.h and lib/Basic/Targets.cpp.
An associated LLVM patch adds the required LLVM IR intrinsics.
For reference, the transactional-execution instructions are documented
in the z/Architecture Principles of Operation for the zEC12:
http://publibfp.boulder.ibm.com/cgi-bin/bookmgr/download/DZ9ZR009.pdf
The associated builtins are documented in the GCC manual:
http://gcc.gnu.org/onlinedocs/gcc/S_002f390-System-z-Built-in-Functions.html
The htmxlintrin.h intrinsics provided for compatibility with the IBM XL
compiler are documented in the "z/OS XL C/C++ Programming Guide".
llvm-svn: 233804
This patch adds Hardware Transaction Memory (HTM) support supported by ISA 2.07
(POWER8). The intrinsic support is based on GCC one [1], with both 'PowerPC HTM
Low Level Built-in Functions' and 'PowerPC HTM High Level Inline Functions'
implemented.
Along with builtins a new driver switch is added to enable/disable HTM
instruction support (-mhtm) and a header with common definitions (mostly to
parse the TFHAR register value). The HTM switch also sets a preprocessor builtin
HTM.
The HTM usage requires a recently newer kernel with PPC HTM enabled. Tested on
powerpc64 and powerpc64le.
This is send along a llvm patch to enabled the builtins and option switch.
[1]
https://gcc.gnu.org/onlinedocs/gcc/PowerPC-Hardware-Transactional-Memory-Built-in-Functions.html
Phabricator Review: http://reviews.llvm.org/D8248
llvm-svn: 233205
This is nearly identical to the v*f128_si256 parts of r231792 and r232052.
AVX2 introduced proper integer variants of the hacked integer insert/extract
C intrinsics that were created for this same functionality with AVX1.
This should complete the front end fixes for insert/extract128 intrinsics.
Corresponding LLVM patch to follow.
llvm-svn: 232109
This is very much like D8088 (checked in at r231792).
Now that we've replaced the vinsertf128 intrinsics,
do the same for their extract twins.
Differential Revision: http://reviews.llvm.org/D8275
llvm-svn: 232052
We want to replace as much custom x86 shuffling via intrinsics
as possible because pushing the code down the generic shuffle
optimization path allows for better codegen and less complexity
in LLVM.
This is the sibling patch for the LLVM half of this change:
http://reviews.llvm.org/D8086
Differential Revision: http://reviews.llvm.org/D8088
llvm-svn: 231792