This change ensures that we sign-extend integer types in case non-matching
operands are encountered when generating a multi-dimensional access offset.
This fixes http://llvm.org/PR23124
Reported-by: Jeremy Huddleston Sequoia <jeremyhu@apple.com>
llvm-svn: 234122
As soon as one operand of the product is invalid, the entire product is invalid.
This happens for example if one of the operands is not loop-invariant.
This fixes http://llvm.org/PR23125
Reported-by: Jeremy Huddleston Sequoia <jeremyhu@apple.com
llvm-svn: 234119
We do not have buildbots or anything that tests this functionality, hence it
most likely bitrots. People interested to use this functionality can always
recover it from svn history.
llvm-svn: 233570
This allows us to delinerize code such as:
A[][n]
for (i
for (j
A[i][n-j-1] = ...
which would previously have been delinearize to an access A[i+1][-j-1].
To recover the correct access we apply the piecewise expression:
{ A[i][j] -> A[i-1][i+N]: i < 0; A[i][j] -> A[i][i]: i >= 0}
This approach generalizes to higher dimensions.
llvm-svn: 233566
This will strip the constant factor of a parameter befor we add it to
the SCoP. As a result the access functions are simplified, e.g., for
the attached test case.
llvm-svn: 233501
When creating parameters the SCEVexpander may introduce new induction variables,
that possibly create scalar dependences in the original scop, before we code
generate the scop. The resulting scalar dependences may then inhibit correct
code generation of the scop. To prevent this, we first version the code without
a run-time check and only then introduce new parameters and the run-time
condition. The if-condition that guards the original scop from being modified by
the SCEVexpander.
This change causes some test case changes as the run-time conditions are now
introduced in the split basic block rather than in the entry basic block.
This fixes http://llvm.org/PR22069
Test case reduced by: Karthik Senthil
llvm-svn: 233477
This options was earlier used for experiments with the vectorizer, but to my
knowledge is not really used anymore. If anybody needs this, we can always
reintroduce this feature.
llvm-svn: 232934
Replacing the old band_tree based code with code that is based on the new
schedule tree [1] interface makes applying complex schedule transformations a lot
more straightforward. We now do not need to reason about the meaning of flat
schedules, but can use a more straightforward tree structure. We do not yet
exploit this a lot in the current code, but hopefully we will be able to do so
soon.
This change also allows us to drop some code, as isl now provides some higher
level interfaces to apply loop transformations such as tiling.
This change causes some small test case changes as isl uses a slightly different
way to perform loop tiling, but no significant functional changes are intended.
[1] http://impact.gforge.inria.fr/impact2014/papers/impact2014-verdoolaege.pdf
llvm-svn: 232911
These test cases did not verify the CHECK lines at all. We add the FileCheck
and also fix some broken CHECK lines. Being here, we extend the checks to
cover the whole loop structure.
llvm-svn: 232710
The BB vectorizer is deprecated and there is no point in generating code for it
any more. This option was introduced when there was not yet any loop vectorizer
in sight. Now being matured, Polly should target the loop vectorizer.
llvm-svn: 232099
This test case was supposed to test the range analysis but it became just
another delinearization test case after enabling delinearization.
Suggested-by: Johannes Doerfert
llvm-svn: 231599