This dialect provides operations that can be used to control transformation of
the IR using a different portion of the IR. It refers to the IR being
transformed as payload IR, and to the IR guiding the transformation as
transform IR.
The main use case for this dialect is orchestrating fine-grain transformations
on individual operations or sets thereof. For example, it may involve finding
loop-like operations with specific properties (e.g., large size) in the payload
IR, applying loop tiling to those and only those operations, and then applying
loop unrolling to the inner loops produced by the previous transformations. As
such, it is not intended as a replacement for the pass infrastructure, nor for
the pattern rewriting infrastructure. In the most common case, the transform IR
will be processed and applied to payload IR by a pass. Transformations
expressed by the transform dialect may be implemented using the pattern
infrastructure or any other relevant MLIR component.
This dialect is designed to be extensible, that is, clients of this dialect are
allowed to inject additional operations into this dialect using the newly
introduced in this patch `TransformDialectExtension` mechanism. This allows the
dialect to avoid a dependency on the implementation of the transformation as
well as to avoid introducing dialect-specific transform dialects.
See https://discourse.llvm.org/t/rfc-interfaces-and-dialects-for-precise-ir-transformation-control/60927.
Reviewed By: nicolasvasilache, Mogball, rriddle
Differential Revision: https://reviews.llvm.org/D123135
Move the operations that correspond to LLVM IR intrinsics in a separate .td
file. This makes it easier to maintain the intrinsics and decreases the compile
time of LLVMDialect.cpp by ~25%.
Depends On D123310
Reviewed By: wsmoses, jacquesguan
Differential Revision: https://reviews.llvm.org/D123315
Adding annotations on as-needed bases, currently only for memrefCopy, but in general all C API functions that take pointers to memory allocated/initialized inside the jit-compiled code must be annotated, to be able to run with msan.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D123557
(With C++ exceptions, `clang++ --target=mips64{,el}-linux-gnu -fpie -pie
-fuse-ld=lld` has link errors (lld does not implement some strange R_MIPS_64
.eh_frame handling in GNU ld). However, sanitizer-x86_64-linux-qemu used this to
build ScudoUnitTests. Pined ScudoUnitTests to -no-pie.)
Default the option introduced in D113372 to ON to match all(?) major Linux
distros. This matches GCC and improves consistency with Android and linux-musl
which always default to PIE.
Note: CLANG_DEFAULT_PIE_ON_LINUX may be removed in the future.
Differential Revision: https://reviews.llvm.org/D120305
Putting __support/FPUtil/x86_64/FMA.h in `hdrs` will trigger a
compilation action for that header, and it will always `#error` out for
non-FMA targets. Move these platform-specific headers that are
conditionally included to `textual_hdrs` instead.
Make FMA flag checks more accurate for x86-64 targets, and refactor
polyeval to use multiply and add instead when FMA instructions are not
available.
Reviewed By: michaelrj, sivachandra
Differential Revision: https://reviews.llvm.org/D123335
(The upgrade of the ppc64le bot and D121257 have fixed compiler-rt failures. Tested by nemanjai.)
Default the option introduced in D113372 to ON to match all(?) major Linux
distros. This matches GCC and improves consistency with Android and linux-musl
which always default to PIE.
Note: CLANG_DEFAULT_PIE_ON_LINUX may be removed in the future.
Differential Revision: https://reviews.llvm.org/D120305
Or rather, error out if it is set to something other than ON. This
removes the ability to enable the legacy pass manager by default,
but does not remove the ability to explicitly enable it through
various flags like -flegacy-pass-manager or -enable-new-pm=0.
I checked, and our test suite definitely doesn't pass with
LLVM_ENABLE_NEW_PASS_MANAGER=OFF anymore.
Differential Revision: https://reviews.llvm.org/D123126
Apply scale should be optionally disabled when lowering via TosaToStandard.
In most cases it should persist until the lowering to specific backend.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D122948
Pass the padding options using arrays instead of lambdas. In particular pass the padding value as string and use the argument parser to create the padding value. Arrays are a more natural choice that matches the current use cases and avoids converting arrays to lambdas.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D122309
These dialects have Python bindings and are tested, but were not
previously exposed through Bazel filegroups.
Differential Revision: https://reviews.llvm.org/D122138
This did not show up as build error because the build also works if the
dependency is transitively available. But there should be a direct
dependency anyway.
Prior to this change the __support_cpp_array_ref target's only dependency was libc_root.
but it #includes "TypeTraits.h" and Array.h for that matter.
These dependencies matter when building in distributed build systems and the relevant
files must be know for the distributed build to ship them to the executor.
Differential Revision: https://reviews.llvm.org/D121974