The cleanup was manual, but assisted by "include-what-you-use". It consists in
1. Removing unused forward declaration. No impact expected.
2. Removing unused headers in .cpp files. No impact expected.
3. Removing unused headers in .h files. This removes implicit dependencies and
is generally considered a good thing, but this may break downstream builds.
I've updated llvm, clang, lld, lldb and mlir deps, and included a list of the
modification in the second part of the commit.
4. Replacing header inclusion by forward declaration. This has the same impact
as 3.
Notable changes:
- llvm/Support/TargetParser.h no longer includes llvm/Support/AArch64TargetParser.h nor llvm/Support/ARMTargetParser.h
- llvm/Support/TypeSize.h no longer includes llvm/Support/WithColor.h
- llvm/Support/YAMLTraits.h no longer includes llvm/Support/Regex.h
- llvm/ADT/SmallVector.h no longer includes llvm/Support/MemAlloc.h nor llvm/Support/ErrorHandling.h
You may need to add some of these headers in your compilation units, if needs be.
As an hint to the impact of the cleanup, running
clang++ -E -Iinclude -I../llvm/include ../llvm/lib/Support/*.cpp -std=c++14 -fno-rtti -fno-exceptions | wc -l
before: 8000919 lines
after: 7917500 lines
Reduced dependencies also helps incremental rebuilds and is more ccache
friendly, something not shown by the above metric :-)
Discourse thread on the topic: https://llvm.discourse.group/t/include-what-you-use-include-cleanup/5831
This revision extends the PDL Interpreter dialect to add support for variadic operands and results, with ranges of these values represented via the recently added !pdl.range type. To support this extension, three new operations have been added that closely match the single variant:
* pdl_interp.check_types : Compare a range of types with a known range.
* pdl_interp.create_types : Create a constant range of types.
* pdl_interp.get_operands : Get a range of operands from an operation.
* pdl_interp.get_results : Get a range of results from an operation.
* pdl_interp.switch_types : Switch on a range of types.
This revision handles adding support in the interpreter dialect and the conversion from PDL to PDLInterp. Support for variadic operands and results in the bytecode will be added in a followup revision.
Differential Revision: https://reviews.llvm.org/D95722
- Add "using namespace mlir::tblgen" in several of the TableGen/*.cpp files and
eliminate the tblgen::prefix to reduce code clutter.
Differential Revision: https://reviews.llvm.org/D85800
Technically a leak in tblgen is harmless, but this makes asan builds of
mlir very noisy. Just use a SpecificBumpPtrAllocator that knows how to
clean up after itself.
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
To support automatically constraint composition of ArrayAttr, a new
predicate combiner, Concat, is introduced. It prepends a prefix and
appends a postfix to a child predicate's final predicate string.
--
PiperOrigin-RevId: 242121186
Previously we have multiple mechanisms to specify op definition and match constraints:
TypeConstraint, AttributeConstraint, Type, Attr, mAttr, mAttrAnyOf, mPat. These variants
are not added because there are so many distinct cases we need to model; essentially,
they are all carrying a predicate. It's just an artifact of implementation.
It's quite confusing for users to grasp these variants and choose among them. Instead,
as the OpBase TableGen file, we need to strike to provide an unified mechanism. Each
dialect has the flexibility to define its own aliases if wanted.
This CL removes mAttr, mAttrAnyOf, mPat. A new base class, Constraint, is added. Now
TypeConstraint and AttrConstraint derive from Constraint. Type and Attr further derive
from TypeConstraint and AttrConstraint, respectively.
Comments are revised and examples are added to make it clear how to use constraints.
PiperOrigin-RevId: 240125076
Previously we have `auto pos = std::string::find(...) != std::string::npos` as
if condition to control substring substitution. Instead of the position for the
found substring, `pos` will be a boolean value indicating found nor not. Then
used as the replace start position, we were always replacing starting from 0 or
1. If the replaced substring also has the pattern to be matched, we'll see
an infinite loop.
PiperOrigin-RevId: 235504681
A recent change in TableGen definitions allowed arbitrary AND/OR predicate
compositions at the cost of removing known-true predicate simplification.
Introduce a more advanced simplification mechanism instead.
In particular, instead of folding predicate C++ expressions directly in
TableGen, keep them as is and build a predicate tree in TableGen C++ library.
The predicate expression-substitution mechanism, necessary to implement complex
predicates for nested classes such as `ContainerType`, is replaced by a
dedicated predicate. This predicate appears in the predicate tree and can be
used for tree matching and separation. More specifically, subtrees defined
below such predicate may be subject to different transformations than those
that appear above. For example, a subtree known to be true above the
substitution predicate is not necessarily true below it.
Use the predicate tree structure to eliminate known-true and known-false
predicates before code emission, as well as to collapse AND and OR predicates
if their value can be deduced based on the value of one child.
PiperOrigin-RevId: 229605997
MLIR has support for type-polymorphic instructions, i.e. instructions that may
take arguments of different types. For example, standard arithmetic operands
take scalars, vectors or tensors. In order to express such instructions in
TableGen, we need to be able to verify that a type object satisfies certain
constraints, but we don't need to construct an instance of this type. The
existing TableGen definition of Type requires both. Extract out a
TypeConstraint TableGen class to define restrictions on types. Define the Type
TableGen class as a subclass of TypeConstraint for consistency. Accept records
of the TypeConstraint class instead of the Type class as values in the
Arguments class when defining operators.
Replace the predicate logic TableGen class based on conjunctive normal form
with the predicate logic classes allowing for abitrary combinations of
predicates using Boolean operators (AND/OR/NOT). The combination is
implemented using simple string rewriting of C++ expressions and, therefore,
respects the short-circuit evaluation order. No logic simplification is
performed at the TableGen level so all expressions must be valid C++.
Maintaining CNF using TableGen only would have been complicated when one needed
to introduce top-level disjunction. It is also unclear if it could lead to a
significantly simpler emitted C++ code. In the future, we may replace inplace
predicate string combination with a tree structure that can be simplified in
TableGen's C++ driver.
Combined, these changes allow one to express traits like ArgumentsAreFloatLike
directly in TableGen instead of relying on C++ trait classes.
PiperOrigin-RevId: 229398247
Expand type matcher template generator to consider a set of predicates that are known to
hold. This avoids inserting redundant checking for trivially true predicates
(for example predicate that hold according to the op definition). This only targets predicates that trivially holds and does not attempt any logic equivalence proof.
PiperOrigin-RevId: 228880468
This CL added a tblgen::Type class to wrap around raw TableGen
Record getValue*() calls on Type defs, which will provide a
nicer API for handling TableGen Record.
The PredCNF class is also updated to work together with
tblgen::Type.
PiperOrigin-RevId: 228429090
Expand type to include matcher predicates. Use CNF form to allow specifying combinations of constraints for type. The matching call for the type is used to verify the construction of the operation as well as in rewrite pattern generation.
The matching initially includes redundant checks (e.g., even if the operand of the op is guaranteed to satisfy some requirement, it is still checked during matcher generation for now). As well as some of the traits specified now check what the generated code already checks. Some of the traits can be removed in future as the verify method will include the relevant checks based on the op definition already.
More work is needed for variadic operands.
CNF form is used so that in the follow up redundant checks in the rewrite patterns could be omitted (e.g., when matching a F32Tensor, one does not need to verify that op X's operand 0 is a Tensor if that is guaranteed by op X's definition). The alternative was to have single matcher function specified, but this would not allow for reasoning about what attributes already hold (at the level of PredAtoms).
Use this new operand type restrictions to rewrite BiasAdd with floating point operands as declarative pattern.
PiperOrigin-RevId: 227991412