Commit Graph

13 Commits

Author SHA1 Message Date
Francis Visoiu Mistrih 39ec2e95ae [CodeGen] Unify the syntax of MBB successors in MIR and -debug output
Instead of:

Successors according to CFG: %bb.6(0x12492492 / 0x80000000 = 14.29%)

print:

successors: %bb.6(0x12492492); %bb.6(14.29%)
llvm-svn: 324685
2018-02-09 00:10:31 +00:00
Francis Visoiu Mistrih da89d1812a [CodeGen] Print MachineBasicBlock labels using MIR syntax in -debug output
Instead of:

%bb.1: derived from LLVM BB %for.body

print:

bb.1.for.body:

Also use MIR syntax for MBB attributes like "align", "landing-pad", etc.

llvm-svn: 324563
2018-02-08 05:02:00 +00:00
Francis Visoiu Mistrih 25528d6de7 [CodeGen] Unify MBB reference format in both MIR and debug output
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.

The MIR printer prints the IR name of a MBB only for block definitions.

* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix

Differential Revision: https://reviews.llvm.org/D40422

llvm-svn: 319665
2017-12-04 17:18:51 +00:00
Cong Hou d97c100dc4 Replace all weight-based interfaces in MBB with probability-based interfaces, and update all uses of old interfaces.
(This is the second attempt to submit this patch. The first caused two assertion
 failures and was reverted. See https://llvm.org/bugs/show_bug.cgi?id=25687)

The patch in http://reviews.llvm.org/D13745 is broken into four parts:

1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.

This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.

All uses of weight-based interfaces are now updated to use probability-based
ones.


Differential revision: http://reviews.llvm.org/D14973

llvm-svn: 254377
2015-12-01 05:29:22 +00:00
Hans Wennborg 1dbaf67537 Revert r254348: "Replace all weight-based interfaces in MBB with probability-based interfaces, and update all uses of old interfaces."
and the follow-up r254356: "Fix a bug in MachineBlockPlacement that may cause assertion failure during BranchProbability construction."

Asserts were firing in Chromium builds. See PR25687.

llvm-svn: 254366
2015-12-01 03:49:42 +00:00
Cong Hou fa1917c673 Replace all weight-based interfaces in MBB with probability-based interfaces, and update all uses of old interfaces.
The patch in http://reviews.llvm.org/D13745 is broken into four parts:

1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.

This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.

All uses of weight-based interfaces are now updated to use probability-based
ones.


Differential revision: http://reviews.llvm.org/D14973

llvm-svn: 254348
2015-12-01 00:02:51 +00:00
Cong Hou 1938f2eb98 Let SelectionDAG start to use probability-based interface to add successors.
The patch in http://reviews.llvm.org/D13745 is broken into four parts:

1. New interfaces without functional changes.
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights.
3. Use new interfaces in all other passes.
4. Remove old interfaces.

This the second patch above. In this patch SelectionDAG starts to use
probability-based interfaces in MBB to add successors but other MC passes are
still using weight-based interfaces. Therefore, we need to maintain correct
weight list in MBB even when probability-based interfaces are used. This is
done by updating weight list in probability-based interfaces by treating the
numerator of probabilities as weights. This change affects many test cases
that check successor weight values. I will update those test cases once this
patch looks good to you.


Differential revision: http://reviews.llvm.org/D14361

llvm-svn: 253965
2015-11-24 08:51:23 +00:00
Diego Novillo de5b8016ab Fix information loss in branch probability computation.
Summary:
This addresses PR 22718. When branch weights are too large, they were
being clamped to the range [1, MaxWeightForBB]. But this clamping is
only applied to edges that go outside the range, so it distorts the
relative branch probabilities.

This patch changes the weight calculation to scale every branch so the
relative probabilities are preserved. The scaling is done differently
now. First, all the branch weights are added up, and if the sum exceeds
32 bits, it computes an integer scale to bring all the weights within
the range.

The patch fixes an existing test that had slightly wrong branch
probabilities due to the previous clamping. It now gets branch weights
scaled accordingly.

Reviewers: dexonsmith

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D9442

llvm-svn: 236750
2015-05-07 17:22:06 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
Duncan P. N. Exon Smith be7ea19b58 IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly.  These
are the matching assembly changes for the metadata/value split in
r223802.

  - Only use the `metadata` type when referencing metadata from a call
    intrinsic -- i.e., only when it's used as a `Value`.

  - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
    when referencing it from call intrinsics.

So, assembly like this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata !{i32 %v}, metadata !0)
      call void @llvm.foo(metadata !{i32 7}, metadata !0)
      call void @llvm.foo(metadata !1, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{metadata !3}, metadata !0)
      ret void, !bar !2
    }
    !0 = metadata !{metadata !2}
    !1 = metadata !{i32* @global}
    !2 = metadata !{metadata !3}
    !3 = metadata !{}

turns into this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata i32 %v, metadata !0)
      call void @llvm.foo(metadata i32 7, metadata !0)
      call void @llvm.foo(metadata i32* @global, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{!3}, metadata !0)
      ret void, !bar !2
    }
    !0 = !{!2}
    !1 = !{i32* @global}
    !2 = !{!3}
    !3 = !{}

I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines).  I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.

This is part of PR21532.

llvm-svn: 224257
2014-12-15 19:07:53 +00:00
Manman Ren 4ece7452ba PGO branch weight: update edge weights in SelectionDAGBuilder.
When converting from "or + br" to two branches, or converting from
"and + br" to two branches, we correctly update the edge weights of
the two branches.

The previous attempt at r200431 was reverted at r200434 because of
two testing case failures. I modified my patch a little, but forgot
to re-run "make check-all".

Testing case CodeGen/ARM/lsr-unfolded-offset.ll is updated because of
the patch's impact on branch probability which causes changes in
spill placement.

llvm-svn: 200502
2014-01-31 00:42:44 +00:00
Manman Ren 7407e0e31c Revert r200431 due to bot failures.
llvm-svn: 200434
2014-01-30 00:53:27 +00:00
Manman Ren 104e0c80cc PGO branch weight: update edge weights in SelectionDAGBuilder.
When converting from "or + br" to two branches, or converting from
"and + br" to two branches, we correctly update the edge weights of
the two branches.

llvm-svn: 200431
2014-01-30 00:24:37 +00:00