The preprocessor currently recognizes module declarations to load a
module based on seeing the 'import' keyword followed by an
identifier. This sequence is fairly unlikely in C (one would need a
type named 'import'), but is more common in Objective-C (where a
variable named 'import' can cause problems). Since import declarations
currently require a leading '@', recognize that in the preprocessor as
well. Fixes <rdar://problem/15084587>.
llvm-svn: 194225
When performing an Objective-C message send to a value of class type,
perform a contextual conversion to an Objective-C pointer type. We've
had this for a long time, but it recently regressed. Fixes
<rdar://problem/15234703>.
llvm-svn: 194224
As a side-effect, constructors definitions will correctly be recognized
and formatted as function declarations. Tests will be added in a
follow-up patch actually using the correct recognition.
llvm-svn: 194209
Also - others have complained about some white space issues - sorry about that - continues to be a pain point for me - will try and see what I can do with clang-format this evening after work - as a short term fix, if anyone can email me the files that they have already identified with issues, it would help me speed up a focused fix. sorry.
llvm-svn: 194206
Both Richard and I felt that the current wording in the working paper needed some tweaking - Please see http://llvm-reviews.chandlerc.com/D2035 for additional context and references to core-reflector messages that discuss wording tweaks.
What is implemented is what we had intended to specify in Bristol; but, recently felt that the specification might benefit from some tweaking and fleshing.
As a rough attempt to explain the semantics: If a nested lambda with a default-capture names a variable within its body, and if the enclosing full expression that contains the name of that variable is instantiation-dependent - then an enclosing lambda that is capture-ready (i.e. within a non-dependent context) must capture that variable, if all intervening nested lambdas can potentially capture that variable if they need to, and all intervening parent lambdas of the capture-ready lambda can and do capture the variable.
Of note, 'this' capturing is also currently underspecified in the working paper for generic lambdas. What is implemented here is if the set of candidate functions in a nested generic lambda includes both static and non-static member functions (regardless of viability checking - i.e. num and type of parameters/arguments) - and if all intervening nested-inner lambdas between the capture-ready lambda and the function-call containing nested lambda can capture 'this' and if all enclosing lambdas of the capture-ready lambda can capture 'this', then 'this' is speculatively captured by that capture-ready lambda.
Hopefully a paper for the C++ committee (that Richard and I had started some preliminary work on) is forthcoming.
This essentially makes generic lambdas feature complete, except for known bugs. The more prominent ones (and the ones I am currently aware of) being:
- generic lambdas and init-captures are broken - but a patch that fixes this is already in the works ...
- nested variadic expansions such as:
auto K = [](auto ... OuterArgs) {
vp([=](auto ... Is) {
decltype(OuterArgs) OA = OuterArgs;
return 0;
}(5)...);
return 0;
};
auto M = K('a', ' ', 1, " -- ", 3.14);
currently cause crashes. I think I know how to fix this (since I had done so in my initial implementation) - but it will probably take some work and back & forth with Doug and Richard.
A warm thanks to all who provided feedback - and especially to Doug Gregor and Richard Smith for their pivotal guidance: their insight and prestidigitation in such matters is boundless!
Now let's hope this commit doesn't upset the buildbot gods ;)
Thanks!
llvm-svn: 194188
limited ways) after the next release. See the lengthy discussions (which
are on-going) and the corresponding commit to LLVM's release notes.
Nothing is actually changing at this point, this is just further
spreading the plan.
llvm-svn: 194184
Summary:
Similar to __FUNCTION__, MSVC exposes the name of the enclosing mangled
function name via __FUNCDNAME__. This implementation is very naive and
unoptimized, it is expected that __FUNCDNAME__ would be used rarely in
practice.
Reviewers: rnk, rsmith, thakis
CC: cfe-commits, silvas
Differential Revision: http://llvm-reviews.chandlerc.com/D2109
llvm-svn: 194181
These allow clients to retrieve persistent AST objects (ASTUnits) which
can be used in an ad-hoc manner after parsing.
To accommodate this change, the code for processing a CompilerInvocation
using a FrontendAction has been factored out to FrontendActionFactory, and
a new base class, ToolAction, has been introduced, allowing the tool to do
arbitrary things with each CompilerInvocation. This change was necessary
because ASTUnit does not use the FrontendAction interface directly.
This change also causes the FileManager in ClangTool to use shared ownership.
This will become necessary because ASTUnit takes shared ownership of
FileManager (ClangTool's FileManager is currently unused by ASTUnit; this
is a FIXME). As shown in the tests, any client of ToolInvocation will
need to be modified to use shared ownership for FileManager.
Differential Revision: http://llvm-reviews.chandlerc.com/D2097
llvm-svn: 194164
On the microsoft ABI clang is producing one weak_odr and one linkonce_odr
destructor, which is reasonable since only one is required.
The fix is simply to move the assert past the special case treatment of
linkonce_odr.
llvm-svn: 194158
These functions can generally be applied to multiple kinds of AST node,
so it makes sense to add them to DynTypedNode.
Differential Revision: http://llvm-reviews.chandlerc.com/D2096
llvm-svn: 194113
The purpose of this function is to allow clients of the dynamic AST matcher
to enumerate each binding.
Differential Revision: http://llvm-reviews.chandlerc.com/D2095
llvm-svn: 194112