Currently the large code model for MachO uses the GOT to make function calls.
Emit the required adrp and ldr instructions to load the address from the GOT.
Related to <rdar://problem/17733076>.
llvm-svn: 214381
UNDEF arguments are not ment to be touched - especially for the webkit_js
calling convention. This fix reproduces the already existing behavior of
SelectionDAG in FastISel.
llvm-svn: 214366
This improves the code generation for the XALU intrinsics when the
condition is feeding a select instruction.
This also updates and enables the XALU unit tests for FastISel.
This fixes <rdar://problem/17831117>.
llvm-svn: 214350
This improves the code generation for the XALU intrinsics when the
condition is feeding a branch instruction.
This is related to <rdar://problem/17831117>.
llvm-svn: 214349
This commit adds support for the {s|u}{add|sub|mul}.with.overflow intrinsics.
The unit tests for FastISel will be enabled in a later commit, once there is
also branch and select folding support.
This is related to <rdar://problem/17831117>.
llvm-svn: 214348
Currently the shift-immediate versions are not supported by tblgen and
hopefully this can be later removed, once the required support has been
added to tblgen.
llvm-svn: 214345
neverHasSideEffects is deprecated, and hasSideEffects = 0 is already
set on the base classes of the basic ALU instruction classes. The
base classes also already set mayLoad = 0 and mayStore = 0
llvm-svn: 214283
We can treat ds_read2_* as a single offset if the offsets are adjacent.
No test since emission of read2 instructions for partially
aligned loads isn't implemented yet.
llvm-svn: 214269
While LLVM now supports both ELFv1 and ELFv2 ABIs, their use is currently
hard-coded via the target triple: powerpc64-linux is always ELFv1, while
powerpc64le-linux is always ELFv2.
These are of course the most common scenarios, but in principle it is
possible to support the ELFv2 ABI on big-endian or the ELFv1 ABI on
little-endian systems (and GCC does support that), and there are some
special use cases for that (e.g. certain Linux kernel versions could
only be built using ELFv1 on LE).
This patch implements the LLVM side of supporting this. As precedent
on other platforms suggests, ABI options are passed to the back-end as
features. Thus, this patch implements two features "elfv1" and "elfv2"
that select the desired ABI if present. (If not, the LLVM uses the
same default rules as now.)
llvm-svn: 214072
The subtarget information is the ultimate source of truth for the feature set
that is enabled at this point. We would previously not propagate the feature
information to the subtarget. While this worked for the most part (features
would be enabled/disabled as requested), if another operation that changed the
feature bits was encountered (such as a mode switch via a .arm or .thumb
directive), we would end up resetting the behaviour of the architectural
extensions.
Handling this properly requires a slightly more complicated handling. We need
to check if the feature is now being toggled. If so, only then do we toggle the
features. In return, we no longer have to calculate the feature bits ourselves.
The test changes are mostly to the diagnosis, which is now more uniform (a nice
side effect!). Add an additional test to ensure that we handle this case
properly.
Thanks to Nico Weber for alerting me to this issue!
llvm-svn: 214057
Rename to allowsMisalignedMemoryAccess.
On R600, 8 and 16 byte accesses are mostly OK with 4-byte alignment,
and don't need to be split into multiple accesses. Vector loads with
an alignment of the element type are not uncommon in OpenCL code.
llvm-svn: 214055