Not sure why the 32/64 split is needed in the atomic_load
store hierarchies. The regular PatFrags do this, but we don't
do it for the existing handling for global.
llvm-svn: 335325
Changing the logic of scalar mask folding to check for valid input types rather
than against invalid ones, making it more robust and fixing PR37879.
Differential Revision: https://reviews.llvm.org/D48366
llvm-svn: 335323
This is the first pass in the main pipeline to use the legacy PM's
ability to run function analyses "on demand". Unfortunately, it turns
out there are bugs in that somewhat-hacky approach. At the very least,
it leaks memory and doesn't support -debug-pass=Structure. Unclear if
there are larger issues or not, but this should get the sanitizer bots
back to green by fixing the memory leaks.
llvm-svn: 335320
Summary:
We can select all instructions that are marked as legal in a full piglit run,
so now is a good time to make the TableGen'd instruction selector default
for all opcodes. This is NFC for a full piglit run, which is why there are
no tests.
Reviewers: arsenm, nhaehnle
Subscribers: kzhuravl, wdng, yaxunl, rovka, kristof.beyls, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D48198
llvm-svn: 335319
clear out deleted loops from the current queue beyond just the current
loop.
This is important because SimpleLoopUnswitch will now enqueue the same
loop to be re-processed. When it does this with the legacy PM, we don't
have a way of canceling the rest of the pipeline and so we can end up
deleting the loop before we reprocess it. =/
This change also makes it easy to support deleting other loops in the
queue to process, although I don't have any use cases for that.
Differential Revision: https://reviews.llvm.org/D48470
llvm-svn: 335317
With non-commutative binops, we could be using the same
variable value as operand 0 in 1 binop and operand 1 in
the other, so we have to check for that possibility and
bail out.
llvm-svn: 335312
This patch adds support for generating a call graph profile from Branch Frequency Info.
The CGProfile module pass simply gets the block profile count for each BB and scans for call instructions. For each call instruction it adds an edge from the current function to the called function with the current BB block profile count as the weight.
After scanning all the functions, it generates an appending module flag containing the data. The format looks like:
!llvm.module.flags = !{!0}
!0 = !{i32 5, !"CG Profile", !1}
!1 = !{!2, !3, !4} ; List of edges
!2 = !{void ()* @a, void ()* @b, i64 32} ; Edge from a to b with a weight of 32
!3 = !{void (i1)* @freq, void ()* @a, i64 11}
!4 = !{void (i1)* @freq, void ()* @b, i64 20}
Differential Revision: https://reviews.llvm.org/D48105
llvm-svn: 335306
Summary:
The large code model allows code and data segments to exceed 2GB, which
means that some symbol references may require a displacement that cannot
be encoded as a displacement from RIP. The large PIC model even relaxes
the assumption that the GOT itself is within 2GB of all code. Therefore,
we need a special code sequence to materialize it:
.LtmpN:
leaq .LtmpN(%rip), %rbx
movabsq $_GLOBAL_OFFSET_TABLE_-.LtmpN, %rax # Scratch
addq %rax, %rbx # GOT base reg
From that, non-local references go through the GOT base register instead
of being PC-relative loads. Local references typically use GOTOFF
symbols, like this:
movq extern_gv@GOT(%rbx), %rax
movq local_gv@GOTOFF(%rbx), %rax
All calls end up being indirect:
movabsq $local_fn@GOTOFF, %rax
addq %rbx, %rax
callq *%rax
The medium code model retains the assumption that the code segment is
less than 2GB, so calls are once again direct, and the RIP-relative
loads can be used to access the GOT. Materializing the GOT is easy:
leaq _GLOBAL_OFFSET_TABLE_(%rip), %rbx # GOT base reg
DSO local data accesses will use it:
movq local_gv@GOTOFF(%rbx), %rax
Non-local data accesses will use RIP-relative addressing, which means we
may not always need to materialize the GOT base:
movq extern_gv@GOTPCREL(%rip), %rax
Direct calls are basically the same as they are in the small code model:
They use direct, PC-relative addressing, and the PLT is used for calls
to non-local functions.
This patch adds reasonably comprehensive testing of LEA, but there are
lots of interesting folding opportunities that are unimplemented.
Reviewers: chandlerc, echristo
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D47211
llvm-svn: 335297
Summary:
A reprise of D25849.
This crash was found through fuzzing some time ago and was documented in PR28879.
No check for load size has been added due to the following tests:
- Transforms/GVN/invariant.group.ll
- Transforms/GVN/pr10820.ll
These tests expect load sizes that are not a multiple of eight.
Thanks to @davide for the original patch.
Reviewers: nlopes, davide, RKSimon, reames, efriedma
Reviewed By: efriedma
Subscribers: davide, llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D48330
llvm-svn: 335294
Summary:
This initiates a discussion on changing Polly accordingly while re-applying r335197 (D48338).
I have never worked on Polly. The proposed change to param_div_div_div_2.ll is not educated, but just patterns that match the output.
All LLVM files are already reviewed in D48338.
Reviewers: jdoerfert, bollu, efriedma
Subscribers: jlebar, sanjoy, hiraditya, llvm-commits, bixia
Differential Revision: https://reviews.llvm.org/D48453
llvm-svn: 335292
Summary:
GCC and the binutils COFF linker do comdats differently from MSVC.
If we want to be ABI compatible, we have to do what they do, which is to
emit unique section names like ".text$_Z3foov" instead of short section
names like ".text". Otherwise, the binutils linker gets confused and
reports multiple definition errors when two object files from GCC and
Clang containing the same inline function are linked together.
The best description of the issue is probably at
https://github.com/Alexpux/MINGW-packages/issues/1677, we don't seem to
have a good one in our tracker.
I fixed up the .pdata and .xdata sections needed everywhere other than
32-bit x86. GCC doesn't use associative comdats for those, it appears to
rely on the section name.
Reviewers: smeenai, compnerd, mstorsjo, martell, mati865
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D48402
llvm-svn: 335286
This is the simplest case from PR37806:
https://bugs.llvm.org/show_bug.cgi?id=37806
If we have a common variable operand used in a pair of binops with vector constants
that are vector selected together, then we can constant shuffle the constant vectors
to eliminate the shuffle instruction.
This has some tricky parts that are hopefully addressed in the tests and their
respective comments:
1. If the shuffle mask contains an undef element, then that lane of the result is
undef:
http://llvm.org/docs/LangRef.html#shufflevector-instruction
Therefore, we can replace the constant in that lane with an undef value except
for div/rem. With div/rem, an undef in the divisor would cause the whole op to
be undef. So I'm using the same hack as in D47686 - replace the undefs with '1'.
2. Intersect the wrapping and FMF of the original binops for the new binop. There
should be no extra poison or fast-math potential in the new binop that wasn't
possible in the original code.
3. Disregard other uses. Given that we're eliminating uses (shortening the
dependency chain), I think that's always the right IR canonicalization. But
I purposely chose the udiv test to demonstrate the scenario where both
intermediate values have other uses because that seems likely worse for
codegen with an expensive math op. This seems like a very rare possibility to
me, so I don't think it requires a backend patch first.
Differential Revision: https://reviews.llvm.org/D48401
llvm-svn: 335283
Update AMDGPU assembler syntax behind the code-object-v3 feature:
* Replace/rename most AMDGPU assembler directives/symbols and document them.
* Provide more diagnostics (e.g. values out of range, missing values, repeated
values).
* Provide path for backwards compatibility, even with underlying descriptor
changes.
Differential Revision: https://reviews.llvm.org/D47736
llvm-svn: 335281
This reverts commit r335206.
As discussed here: https://reviews.llvm.org/rL333740, a fix will come
tomorrow. In the meanwhile, revert this to fix some bots.
llvm-svn: 335272
BlockWaitcntProcessedSet was not being cleared between calls, so it was
producing incorrect counts in cases where MBB addresses happened to coincide
across multiple calls.
Differential Revision: https://reviews.llvm.org/D48391
llvm-svn: 335268
and everything that comes with it from implementation
and v3 header files.
Leave definition in v2 header files for backwards
compatibility.
Differential Revision: https://reviews.llvm.org/D48191
llvm-svn: 335267
Summary:
The logic for handling the sinking of COPY instructions was generating
different code when building with debug flags.
The original code did not take into consideration debug instructions. This
resulted in the registers in the DBG_VALUE instructions being treated as used,
and prevented the COPY from being sunk. This patch avoids analyzing debug
instructions when trying to sink COPY instructions.
This patch also creates a routine from the code in MachineSinking::SinkInstruction to
perform the logic of sinking an instruction along with its debug instructions.
This functionality is used in multiple places, including the code for sinking COPY instrs.
Reviewers: junbuml, javed.absar, MatzeB, bjope
Reviewed By: bjope
Subscribers: aprantl, probinson, thegameg, jonpa, bjope, vsk, kristof.beyls, JDevlieghere, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D45637
llvm-svn: 335264
The previous code worked with vectors, but it failed when the
vector constants contained undef elements.
The matchers handle those cases.
llvm-svn: 335262
This is outwardly NFC from what I can tell, but it should be more efficient
to simplify first (despite the name, SimplifyAssociativeOrCommutative does
not actually simplify as InstSimplify does - it creates/morphs instructions).
This should make it easier to refactor duplicated code that runs for all binops.
llvm-svn: 335258
This reverts commit d8f57105010cc7e78026e511d5def873fc91e0e7.
Original Commit:
Author: Haicheng Wu <haicheng@codeaurora.org>
Date: Sun Feb 18 13:51:33 2018 +0000
[AArch64] Coalesce Copy Zero during instruction selection
Add special case for copy of zero to avoid a double copy.
Differential Revision: https://reviews.llvm.org/D36104
Author's intention is to remove a BB that has one mov instruction. In
order to do that, d8f571050 pessmizes MachineSinking by introducing a
copy, such that mov instruction is NOT moved to the BB. Optimization
downstream gets rid of the BB with only mov instruction. This works well
if we have only one fall through branch as there is only one "extra"
mov instruction.
If we have multiple fall throughs, we will have a lot of redundant movs.
In such a case, it's better to have this BB which has one mov instruction.
This is causing degradation in jpeg, fft and other codebases. I believe
if we want to remove a BB with only one branch instruction, we should not
pessimize Machine Sinking at all, and find some other solution.
llvm-svn: 335251
Allowed folding for "and/or" binops with non-constant operand if
arguments of select are 0/-1 values.
Normally this code with "and" opcode does not get to a DAG combiner
and simplified yet in the InstCombine. However AMDGPU produces it
during lowering and InstCombine has no chance to optimize it out.
In turn the same pattern with "or" opcode can reach DAG.
Differential Revision: https://reviews.llvm.org/D48301
llvm-svn: 335250
This option allows codegen (such as DAGCombine or MI scheduling) to use alias
analysis information, which can help with the codegen on in-order cpu's,
especially machine scheduling. Here I have done things the same way as AArch64,
adding a subtarget feature to enable this for specific cores, and enabled it for
the R52 where we have a schedule to make use of it.
Differential Revision: https://reviews.llvm.org/D48074
llvm-svn: 335249
Summary:
When expanding the PseudoTail in expandFunctionCall() we were using X6
to save the return address. Since this is a tail call the return
address is not needed, this patch replaces it with X0 to be ignored.
This matches the behaviour listed in the ISA V2.2 document page 110.
tail offset -----> jalr x0, x6, offset
GCC exhibits the same behavior.
Reviewers: apazos, asb, mgrang
Reviewed By: asb
Subscribers: rbar, johnrusso, simoncook, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, rogfer01
Differential Revision: https://reviews.llvm.org/D48343
llvm-svn: 335239
This should help in lowering the following four intrinsics:
_mm256_cvtepi32_epi8
_mm256_cvtepi64_epi16
_mm256_cvtepi64_epi8
_mm512_cvtepi64_epi8
Differential Revision: https://reviews.llvm.org/D46957
llvm-svn: 335238
Summary:
For sample and gather ops, we can accurately determine the set of
vaddr-size instruction variants that are required. This reduces
the size of instruction tables by ~5%.
The number of machine instruction opcodes is reduced from 10002
to 9476.
Change-Id: Ie7fc65d3657b762c7816017fe70b2e9bec644a8a
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, llvm-commits, t-tye
Differential Revision: https://reviews.llvm.org/D48168
llvm-svn: 335232
Summary:
This also removes the need for atomic pseudo instructions, since
we select the correct encoding directly in SITargetLowering::lowerImage
for dimension-aware image intrinsics.
Mesa uses dimension-aware image intrinsics since
commit a9a7993441.
Change-Id: I7473d20009476a4ed6d919cae4e6dca9ff42e77a
Reviewers: arsenm, rampitec, mareko, tpr, b-sumner
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D48167
llvm-svn: 335231
Summary:
Use the expanded features of the TableGen generic tables to avoid manually
adding the combinatorially exploded set of intrinsics. The
getAMDGPUImageDimIntrinsic lookup function is early-out,
i.e. non-AMDGPU intrinsics will never look at the underlying table.
Use a generic approach for getting the new intrinsic overload to keep the
code simple, and make the image dmask handling more generic:
- handle non-sampler image loads
- handle the case where the set of demanded elements is not a prefix
There is some overlap between this code and an optimization that happens
in the backend during code generation. They currently complement each other:
- only the codegen optimization can generate vec3 loads
- only the InstCombine optimization can handle D16
The InstCombine optimization also likely covers more cases since the
codegen optimization is fairly ad-hoc. Ideally, we'll remove the optimization
in codegen once the infrastructure for vec3 is in place (which will probably
take a long time).
Modify the test cases to use dimension-aware intrinsics. This makes it
easier to see that the test coverage for the new intrinsics is equivalent,
and the old style intrinsics will be removed in a follow-up commit anyway.
Change-Id: I4b91ea661413d13004956fe4ef7d13d41b8ce3ad
Reviewers: arsenm, rampitec, majnemer
Subscribers: kzhuravl, wdng, mgorny, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D48165
llvm-svn: 335230
Summary:
Having TableGen patterns for image intrinsics is hitting limitations:
for D16 we already have to manually pre-lower the packing of data
values, and we will have to do the same for A16 eventually.
Since there is already some custom C++ code anyway, it is arguably easier
to just do everything in C++, now that we can use the beefed-up generic
tables backend of TableGen to provide all the required metadata and map
intrinsics to corresponding opcodes. With this approach, all image
intrinsic lowering happens in SITargetLowering::lowerImage. That code is
dense due to all the cases that it handles, but it should still be easier
to follow than what we had before, by virtue of it all being done in a
single location, and by virtue of not relying on the TableGen pattern
magic that very few people really understand.
This means that we will have MachineSDNodes with MIMG instructions
during DAG combining, but that seems alright: previously we had
intrinsic nodes instead, but those are similarly opaque to the generic
CodeGen infrastructure, and the final pattern matching just did a 1:1
translation to machine instructions anyway. If anything, the fact that
we now merge the address words into a vector before DAG combine should
be an advantage.
Change-Id: I417f26bd88f54ce9781c1668acc01f3f99774de6
Reviewers: arsenm, rampitec, rtaylor, tstellar
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D48017
llvm-svn: 335228
Summary:
This allows us to access rich information about MIMG opcodes from C++ code.
Simplifying the mapping between equivalent opcodes of different data size
becomes quite natural.
This also flattens the MIMG-related class and multiclass hierarchy a little,
and collapses together some of the scaffolding for sample and gather4 opcodes.
Change-Id: I1a2549fdc1e881ff100e5393d2d87e73729a0ccd
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D48016
llvm-svn: 335227
Summary:
This will allows us to provide rich metadata about the instructions
in tables that are accessible by custom C++ code.
Change-Id: Id9305a26304ab6a6cceb6c65c8cd49141cc0101d
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D48011
llvm-svn: 335224
Summary:
Kill instructions sometimes do use SCC in unusual circumstances, when
v_cmpx cannot be used due to the operands that are involved.
Additionally, even if SCC was never defined by the expansion, kill pseudos
could previously occur between an s_cmp and an s_cbranch_scc, which breaks
the SCC liveness tracking when the pseudo is expanded to split the basic
block. While it would be possible to explicitly mark the SCC as live-in for
the successor basic block, it's simpler to just mark the pseudo as using SCC,
so that such a sequence is never emitted by instruction selection in the
first place.
A similar issue affects indirect source/dest pseudos in principle, although
I haven't been able to come up with a test case where it actually matters
(this affects instruction selection, so a MIR test can't be used).
Fixes: dEQP-GLES3.functional.shaders.discard.dynamic_loop_always
Change-Id: Ica8d82ecff1a763b892a1112cf1b06c948863a4f
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D47761
llvm-svn: 335223
Summary:
This allows us to reduce the number of different machine instruction
opcodes, which reduces the table sizes and helps flatten the TableGen
multiclass hierarchies.
We can do this because for each hardware MIMG opcode, we have a full set
of IMAGE_xxx_Vn_Vm machine instructions for all required sizes of vdata
and vaddr registers. Instead of having separate D16 machine instructions,
a packed D16 instructions loading e.g. 4 components can simply use the
same V2 opcode variant that non-D16 instructions use.
We still require a TSFlag for D16 buffer instructions, because the
D16-ness of buffer instructions is part of the opcode. Renaming the flag
should help avoid future confusion.
The one non-obvious code change is that for gather4 instructions, the
disassembler can no longer automatically decide whether to use a V2 or
a V4 variant. The existing logic which choose the correct variant for
other MIMG instruction is extended to cover gather4 as well.
As a bonus, some of the assembler error messages are now more helpful
(e.g., complaining about a wrong data size instead of a non-existing
instruction).
While we're at it, delete a whole bunch of dead legacy TableGen code.
Change-Id: I89b02c2841c06f95e662541433e597f5d4553978
Reviewers: arsenm, rampitec, kzhuravl, artem.tamazov, dp, rtaylor
Subscribers: wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D47434
llvm-svn: 335222
Summary:
This also allows inner foreach loops to have a list that depends on
the iteration variable of an outer foreach loop. The test cases show
some very simple examples of how this can be used.
This was perhaps the last remaining major non-orthogonality in the
TableGen frontend.
Change-Id: I79b92d41a5c0e7c03cc8af4000c5e1bda5ef464d
Reviewers: tra, simon_tatham, craig.topper, MartinO, arsenm
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D47431
llvm-svn: 335221
This enables da-delinearize in Dependence Analysis for delinearizing array
accesses into multiple dimensions. This can help to increase the power of
Dependence analysis on multi-dimensional arrays and prevent having to fall
back to the slower and less accurate MIV tests. It adds static checks on the
bounds of the arrays to ensure that one dimension doesn't overflow into
another, and brings our code in line with our tests.
Differential Revision: https://reviews.llvm.org/D45872
llvm-svn: 335217
These were being over cautious for costs for one/two op general shuffles - VSHUFPD doesn't have to replicate the same shuffle in both lanes like VSHUFPS does.
llvm-svn: 335216
Summary:
In some cases, these operands lacked the IsDebug property, which is meant to signal that
they should not affect codegen. This patch adds a check for this property in the
MachineVerifier and adds it where it was missing.
This includes refactorings to use MachineInstrBuilder construction functions instead of
manually setting up the intrinsic everywhere.
Patch by: JesperAntonsson
Reviewers: aprantl, rnk, echristo, javed.absar
Reviewed By: aprantl
Subscribers: qcolombet, sdardis, nemanjai, JDevlieghere, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D48319
llvm-svn: 335214
The alignment parameter to getExtLoad is treated as a base alignment,
not the alignment of the load (base + offset). When we infer a better
alignment for a Ptr we need to ensure that it applies to the base to
prevent the alignment on the load from being wrong.
This fixes a bug where the alignment could then be used to incorrectly
prove noalias between a load and a store, leading to a miscompile.
Differential Revision: https://reviews.llvm.org/D48029
llvm-svn: 335210
r335150 should resolve the issues with the clang-with-thin-lto-ubuntu
and clang-with-lto-ubuntu builders.
Original message:
This patch updates IPSCCP to use PredicateInfo to propagate
facts to true branches predicated by EQ and to false branches
predicated by NE.
As a follow up, we should be able to extend it to also propagate additional
facts about nonnull.
Reviewers: davide, mssimpso, dberlin, efriedma
Reviewed By: davide, dberlin
llvm-svn: 335206
Summary:
Fixes PR36579.
For cases where we had e.g.
DBG_VALUE 42
[...]
DBG_VALUE undef
LiveDebugVariables would discard all undef DBG_VALUEs and then it would
look like the variable had the value 42 throughout the rest of the
function, which is incorrect.
With this patch we don't remove all undef DBG_VALUEs in LiveDebugVariables
so they will be kept after register allocation just like other DBG_VALUEs
which will yield more correct debug information.
Reviewers: aprantl
Reviewed By: aprantl
Subscribers: bjope, Ka-Ka, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D48277
llvm-svn: 335205
conditions feeding a chain of `and`s or `or`s for a branch.
Much like with full non-trivial unswitching, we rely on the pass manager
to handle iterating until all of the profitable unswitches have been
done. This is to allow other more profitable unswitches to fire on any
of the cloned, simpler versions of the loop if viable.
Threading the partial unswiching through the non-trivial unswitching
logic motivated some minor refactorings. If those are too disruptive to
make it reasonable to review this patch, I can separate them out, but
it'll be somewhat timeconsuming so I wanted to send it for initial
review as-is. Feel free to tell me whether it warrants pulling apart.
I've tried to re-use (and factor out) logic form the partial trivial
unswitching, but not as much could be shared as I had haped. Still, this
wasn't as bad as I naively expected.
Some basic testing is added, but I probably need more. Suggestions for
things you'd like to see tested more than welcome. One thing I'd like to
do is add some testing that when we schedule this with loop-instsimplify
it effectively cleans up the cruft created.
Last but not least, this uncovered a bug that has been in loop cloning
the entire time for non-trivial unswitching. Specifically, we didn't
correctly add the outer-most cloned loop to the list of cloned loops.
This meant that LCSSA wouldn't be updated for it hypothetically, and
more significantly that we would never visit it in the loop pass
manager. I noticed this while checking loop-instsimplify by hand. I'll
try to separate this bugfix out into its own patch with a more focused
test. But it is just one line, so shouldn't significantly confuse the
review here.
After this patch, the only missing "feature" in this unswitch I'm aware
of us non-trivial unswitching of switches. I'll try implementing *full*
non-trivial unswitching of switches (which is at least a sound thing to
implement), but *partial* non-trivial unswitching of switches is
something I don't see any sound and principled way to implement. I also
have no interesting test cases for the latter, so I'm not really
worried. The rest of the things that need to be ported are bug-fixes and
more narrow / targeted support for specific issues.
Differential Revision: https://reviews.llvm.org/D47522
llvm-svn: 335203
Summary:
Since the value stored in the cache might be deleted or replaced with
something else, we need to use tracking ValueHandlers instead of plain
Value pointers. It was discovered in one of internal builds, and
unfortunately there is no small reproducer for the issue.
The cache was introduced in rL327328.
Reviewers: ahatanak, pete
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D48407
llvm-svn: 335201
Summary:
Try to match udiv and urem patterns, and sink zext down to the leaves.
I'm not entirely sure why some unrelated tests change, but the added <nsw>s seem right.
Reviewers: sanjoy
Subscribers: jlebar, hiraditya, bixia, llvm-commits
Differential Revision: https://reviews.llvm.org/D48338
llvm-svn: 335197
Errors found processing the DW_AT_ranges attribute are propagated by lower level
routines and reported by their callers.
Reviewer: JDevlieghere
Differential Revision: https://reviews.llvm.org/D48344
llvm-svn: 335188
These are identical but use microMIPS instructions instead of MIPS instructions.
Also, flatten the 'let AdditionalPredicates = [InMicroMips]' by using the
ISA_MICROMIPS adjective. Add tests for constant materialization.
Reviewers: atanasyan, abeserminji, smaksimovic
Differential Revision: https://reviews.llvm.org/D48275
llvm-svn: 335185
Summary:
Two utils methods have essentially the same functionality. This is an attempt to merge them into one.
1. lib/Transforms/Utils/Local.cpp : MergeBasicBlockIntoOnlyPred
2. lib/Transforms/Utils/BasicBlockUtils.cpp : MergeBlockIntoPredecessor
Prior to the patch:
1. MergeBasicBlockIntoOnlyPred
Updates either DomTree or DeferredDominance
Moves all instructions from Pred to BB, deletes Pred
Asserts BB has single predecessor
If address was taken, replace the block address with constant 1 (?)
2. MergeBlockIntoPredecessor
Updates DomTree, LoopInfo and MemoryDependenceResults
Moves all instruction from BB to Pred, deletes BB
Returns if doesn't have a single predecessor
Returns if BB's address was taken
After the patch:
Method 2. MergeBlockIntoPredecessor is attempting to become the new default:
Updates DomTree or DeferredDominance, and LoopInfo and MemoryDependenceResults
Moves all instruction from BB to Pred, deletes BB
Returns if doesn't have a single predecessor
Returns if BB's address was taken
Uses of MergeBasicBlockIntoOnlyPred that need to be replaced:
1. lib/Transforms/Scalar/LoopSimplifyCFG.cpp
Updated in this patch. No challenges.
2. lib/CodeGen/CodeGenPrepare.cpp
Updated in this patch.
i. eliminateFallThrough is straightforward, but I added using a temporary array to avoid the iterator invalidation.
ii. eliminateMostlyEmptyBlock(s) methods also now use a temporary array for blocks
Some interesting aspects:
- Since Pred is not deleted (BB is), the entry block does not need updating.
- The entry block was being updated with the deleted block in eliminateMostlyEmptyBlock. Added assert to make obvious that BB=SinglePred.
- isMergingEmptyBlockProfitable assumes BB is the one to be deleted.
- eliminateMostlyEmptyBlock(BB) does not delete BB on one path, it deletes its unique predecessor instead.
- adding some test owner as subscribers for the interesting tests modified:
test/CodeGen/X86/avx-cmp.ll
test/CodeGen/AMDGPU/nested-loop-conditions.ll
test/CodeGen/AMDGPU/si-annotate-cf.ll
test/CodeGen/X86/hoist-spill.ll
test/CodeGen/X86/2006-11-17-IllegalMove.ll
3. lib/Transforms/Scalar/JumpThreading.cpp
Not covered in this patch. It is the only use case using the DeferredDominance.
I would defer to Brian Rzycki to make this replacement.
Reviewers: chandlerc, spatel, davide, brzycki, bkramer, javed.absar
Subscribers: qcolombet, sanjoy, nemanjai, nhaehnle, jlebar, tpr, kbarton, RKSimon, wmi, arsenm, llvm-commits
Differential Revision: https://reviews.llvm.org/D48202
llvm-svn: 335183
Summary: Make the MemorySSA verify also check that all Phi incoming blocks are block predecessors.
Reviewers: george.burgess.iv
Subscribers: sanjoy, jlebar, Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D48333
llvm-svn: 335174
I don't believe there is any real reason to have separate X86 specific opcodes for vector compares. Setcc has the same behavior just uses a different encoding for the condition code.
I had to change the CondCodeAction for SETLT and SETLE to prevent some transforms from changing SETGT lowering.
Differential Revision: https://reviews.llvm.org/D43608
llvm-svn: 335173
As described in D48359, this patch pushes InstructionsState down the BoUpSLP call hierarchy instead of the corresponding raw OpValue. This makes it easier to track the alternate opcode etc. and avoids us having to call getAltOpcode which makes it difficult to support more than one alternate opcode.
Differential Revision: https://reviews.llvm.org/D48382
llvm-svn: 335170
Previously this folding was done only if select is a first operand.
However, for non-commutative operations constant may go before
select.
Differential Revision: https://reviews.llvm.org/D48223
llvm-svn: 335167
The idea of partial unswitching is to take a *part* of a branch's
condition that is loop invariant and just unswitching that part. This
primarily makes sense with i1 conditions of branches as opposed to
switches. When dealing with i1 conditions, we can easily extract loop
invariant inputs to a a branch and unswitch them to test them entirely
outside the loop.
As part of this, we now create much more significant cruft in the loop
body, so this relies on adding cleanup passes to the loop pipeline and
revisiting unswitched loops to do that cleanup before continuing to
process them.
This already appears to be more powerful at unswitching than the old
loop unswitch pass, and so I'd appreciate pretty careful review in case
I'm just missing some correctness checks. The `LIV-loop-condition` test
case is not unswitched by the old unswitch pass, but is with this pass.
Thanks to Sanjoy and Fedor for the review!
Differential Revision: https://reviews.llvm.org/D46706
llvm-svn: 335156
These instructions were renamed in version 2.2 of the user-level ISA spec, but
the old name should also be accepted by standard tools.
llvm-svn: 335154
This utility should operate on Values, not Instructions. While I'm here,
I've also made it possible to skip emitting replacement dbg.values for
certain debug users (by having RewriteExpr return nullptr).
llvm-svn: 335152
Using OrderedInstructions::dominates as comparator for instructions in
BBs without dominance relation can cause a non-deterministic order
between such instructions. That in turn can cause us to materialize
copies in a non-deterministic order. While this does not effect
correctness, it causes some minor non-determinism in the final generated
code, because values have slightly different labels.
Without this patch, running -print-predicateinfo on a reasonably large
module produces slightly different output on each run.
This patch uses the dominator trees DFSInNum to order instruction from
different BBs, which should enforce a deterministic ordering and
guarantee that dominated instructions come after the instructions that
dominate them.
Reviewers: dberlin, efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D48230
llvm-svn: 335150
Summary:
Due to uniqueing of DICompositeTypes, it's possible for a type from one
module to be loaded into another earlier module without being renamed.
Then when the defining module is being IRMoved, the type can be used as
a Mapping destination before being loaded, such that when it's requested
using TypeMapTy::get() it will fail with an assertion that the type is a
source type when it's actually a type in both the source and
destination modules. Correctly handle that case by allowing a non-opaque
non-literal struct type be present in both modules.
Fix for PR37684.
Reviewers: pcc, tejohnson
Reviewed By: pcc, tejohnson
Subscribers: tobiasvk, mehdi_amini, steven_wu, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D47898
llvm-svn: 335145
The purpose of this utility is to make it easier for optimizations to
insert replacement dbg.values for instructions they are deleting. This
is useful in situations where salvageDebugInfo is inapplicable, say,
because the new dbg.value cannot refer to an operand of the dying value.
The utility is called insertReplacementDbgValues.
It assumes that the instruction 'From' is going to be deleted, and
inserts replacement dbg.values for each debug user of 'From'. The
newly-inserted dbg.values refer to 'To' instead of 'From'. Each
replacement dbg.value has the same location and variable as the debug
user it replaces, has a DIExpression determined by the result of
'RewriteExpr' applied to an old debug user of 'From', and is placed
before 'InsertBefore'.
This should simplify future patches, like D48331.
llvm-svn: 335144
Summary:
Found some regressions (infinite loop in DAGTypeLegalizer::RemapId)
after r334880. This patch makes sure that we do map a TableId to
itself.
Reviewers: niravd
Reviewed By: niravd
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48364
llvm-svn: 335141
Summary:
The waterfall no longer builds .s files and no longers uses
the wasm-o when it builds object files.
Subscribers: dschuff, jgravelle-google, aheejin, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D48371
llvm-svn: 335135
This is part of a move towards generalizing the alternate opcode mechanism and not just supporting (F)Add/(F)Sub counterparts.
The patch embeds the AltOpcode in the InstructionsState instead of calling getAltOpcode so often.
I'm hoping to eventually remove all uses of getAltOpcode and handle alternate opcode selection entirely within getSameOpcode, that will require us to use InstructionsState throughout the BoUpSLP call hierarchy (similar to some of the changes in D28907), which I will begin in future patches.
Differential Revision: https://reviews.llvm.org/D48359
llvm-svn: 335134
D47985 saw the old SK_Alternate 'alternating' shuffle mask replaced with the SK_Select mask which accepts either input operand for each lane, equivalent to a vector select with a constant condition operand.
This patch updates SLPVectorizer to make full use of this SK_Select shuffle pattern by removing the 'isOdd()' limitation.
The AArch64 regression will be fixed by D48172.
Differential Revision: https://reviews.llvm.org/D48174
llvm-svn: 335130
For both operands are unsigned, the following optimizations are valid, and missing:
1. X > Y && X != 0 --> X > Y
2. X > Y || X != 0 --> X != 0
3. X <= Y || X != 0 --> true
4. X <= Y || X == 0 --> X <= Y
5. X > Y && X == 0 --> false
unsigned foo(unsigned x, unsigned y) { return x > y && x != 0; }
should fold to x > y, but I found we haven't done it right now.
besides, unsigned foo(unsigned x, unsigned y) { return x < y && y != 0; }
Has been folded to x < y, so there may be a bug.
Patch by: Li Jia He!
Differential Revision: https://reviews.llvm.org/D47922
llvm-svn: 335129
These are produced by GCC and supported by GAS, but not currently contained in
the pseudoinstruction listing in the RISC-V ISA manual.
llvm-svn: 335127
These are produced by GCC and supported by GAS, but not currently contained in
the pseudoinstruction listing in the RISC-V ISA manual.
llvm-svn: 335120
Thumb has more 16-bit encoding space dedicated to ADD than ORR, allowing both a
3-address encoding and a wider range of immediates. So, particularly when
optimizing for code size (but it doesn't make things worse elsewhere) it's
beneficial to select an OR operation to an ADD if we know overflow won't occur.
This is made even better by LLVM's penchant for putting operations in canonical
form by converting the other way.
llvm-svn: 335119
This patch teaches llvm-mca how to identify register writes that implicitly zero
the upper portion of a super-register.
On X86-64, a general purpose register is implemented in hardware as a 64-bit
register. Quoting the Intel 64 Software Developer's Manual: "an update to the
lower 32 bits of a 64 bit integer register is architecturally defined to zero
extend the upper 32 bits". Also, a write to an XMM register performed by an AVX
instruction implicitly zeroes the upper 128 bits of the aliasing YMM register.
This patch adds a new method named clearsSuperRegisters to the MCInstrAnalysis
interface to help identify instructions that implicitly clear the upper portion
of a super-register. The rest of the patch teaches llvm-mca how to use that new
method to obtain the information, and update the register dependencies
accordingly.
I compared the kernels from tests clear-super-register-1.s and
clear-super-register-2.s against the output from perf on btver2. Previously
there was a large discrepancy between the estimated IPC and the measured IPC.
Now the differences are mostly in the noise.
Differential Revision: https://reviews.llvm.org/D48225
llvm-svn: 335113
Summary:
Related to https://bugs.llvm.org/show_bug.cgi?id=37793, https://reviews.llvm.org/D46760#1127287
We'd like to do this canonicalization https://rise4fun.com/Alive/Gmc
But it is currently restricted by rL155136 / rL155362, which says:
```
// This is a constant shift of a constant shift. Be careful about hiding
// shl instructions behind bit masks. They are used to represent multiplies
// by a constant, and it is important that simple arithmetic expressions
// are still recognizable by scalar evolution.
//
// The transforms applied to shl are very similar to the transforms applied
// to mul by constant. We can be more aggressive about optimizing right
// shifts.
//
// Combinations of right and left shifts will still be optimized in
// DAGCombine where scalar evolution no longer applies.
```
I think these tests show that for *constants*, SCEV has no issues with that canonicalization.
Reviewers: mkazantsev, spatel, efriedma, sanjoy
Reviewed By: mkazantsev
Subscribers: sanjoy, javed.absar, llvm-commits, stoklund, bixia
Differential Revision: https://reviews.llvm.org/D48229
llvm-svn: 335101
Summary:
First off: i do not have any access to that processor,
so this is purely theoretical, no benchmarks.
I have been looking into b**d**ver2 scheduling profile, and while cross-referencing
the existing b**t**ver2, znver1 profiles, and the reference docs
(`Software Optimization Guide for AMD Family {15,16,17}h Processors`),
i have noticed that only b**t**ver2 scheduling profile specifies these.
Also, there is no mca test coverage.
Reviewers: RKSimon, craig.topper, courbet, GGanesh, andreadb
Reviewed By: GGanesh
Subscribers: gbedwell, vprasad, ddibyend, shivaram, Ashutosh, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D47676
llvm-svn: 335099
Summary:
I ran llvm-exegesis on SKX, SKL, BDW, HSW, SNB.
Atom is from Agner and SLM is a guess.
I've left AMD processors alone.
Reviewers: RKSimon, craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48079
llvm-svn: 335097
Summary:
If we get an error building the SelectionDAG for inline assembly we try to continue and still build the DAG.
But if the return type for the inline assembly is a struct we end up crashing because we try to create an UNDEF node with a struct type which isn't valid.
Instead we need to create an UNDEF for each element of the struct and join them with merge_values.
This patch relies on single operand merge_values being handled gracefully by getMergeValues. If the return type is void there will be no VTs returned by ComputeValueVTs and now we just return instead of calling setValue. Hopefully that's ok, I assumed nothing would need to look up the mapped value for void node.
Fixes PR37359
Reviewers: rengolin, rovka, echristo, efriedma, bogner
Reviewed By: efriedma
Subscribers: craig.topper, llvm-commits
Differential Revision: https://reviews.llvm.org/D46560
llvm-svn: 335093
Summary:
After r335018, the static tables are guaranteed sorted by the EVEX opcode to convert. We can use this to do a binary search and remove the need for any secondary data structures.
Right now one table is 736 entries and the other is 482 entries. It might make sense to merge the two tables as a follow up. The effort it takes to select the table is probably similar to the extra binary search step it would require for a larger table.
I haven't done any measurements to see if this has any effect on compile time, but I don't imagine that EVEX->VEX conversion is a place we spend a lot of time.
Reviewers: RKSimon, spatel, chandlerc
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48312
llvm-svn: 335092
This patch introduces two helpers to make it easier to ignore debug
intrinsics:
- Instruction::getNextNonDebugInstruction()
This is just like Instruction::getNextNode(), except that it skips debug
info.
- skipDebugInfo(BasicBlock::iterator)
A free function which advances a BasicBlock iterator past any debug
info. This is a no-op when the iterator already points to a non-debug
instruction.
Part of: llvm.org/PR37728
Related to: https://reviews.llvm.org/D47874
Differential Revision: https://reviews.llvm.org/D48305
llvm-svn: 335083
This patch covers up a fairly fundemental issue around remat and register allocation which shows up with psuedo instructions with more vreg uses than there are physical registers. This patch essentially just disables remat for STATEPOINTs which are the only case we've seen so far, but long term we need a better fix.
For STATEPOINTs specifically, this is a strict improvement. It unblocks progress towards enabling a currently off-by-default mode which integrates deopt bundle operand lowering with register allocator spilling so that we end up with smaller stack sizes and more optimally placed spills. Assming no other issues turn up during my next round of integration testing - which based on experience so far, is admittedly unlikely - we might finally be able to enable something I've been working towards in small bits and pieces for years now. :)
For psuedo ops in general, there are a couple of ideas for a "proper fix" discussed on the bug, but I'm far enough outside my knowledge area to not be able to see any of them through to a successful conclusion. If anyone wants to help out here, please do.
Differential Revision: https://reviews.llvm.org/D41098
llvm-svn: 335077
insertOutlinerPrologue was not used by any target, and prologue-esque code was
beginning to appear in insertOutlinerEpilogue. Refactor that into one function,
buildOutlinedFrame.
This just removes insertOutlinerPrologue and renames insertOutlinerEpilogue.
llvm-svn: 335076
Summary:
This fixes liveness tracking information after `drop` instruction
insertion in ExplicitLocals pass.
When a drop instruction is inserted to drop a dead register operand, the
original operand should be marked not dead anymore because it is now
used by the new drop instruction. And the operand to the new drop
instruction should be marked killed instead. This bug caused some
programs to fail when `llc` is run with `-verify-machineinstrs` option.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D48253
llvm-svn: 335074
The optimizer is getting smarter (eg, D47986) about differentiating shuffles
based on its mask values, so we should make queries on the mask constant
operand generally available to avoid code duplication.
We'll probably use this soon in the vectorizers and instcombine (D48023 and
https://bugs.llvm.org/show_bug.cgi?id=37806).
We might clean up TTI a bit more once all of its current 'SK_*' options are
covered.
Differential Revision: https://reviews.llvm.org/D48236
llvm-svn: 335067
Summary:
Patch r323922 changed the sigil for physical registers to '$', instead of '%'.
An error message was missed during this change, and reports the wrong sigil.
This patch corrects that diagnostic and the tests that check that error string.
Reviewers: zer0, bjope
Reviewed By: bjope
Subscribers: bjope, thegameg, plotfi, llvm-commits
Differential Revision: https://reviews.llvm.org/D48086
llvm-svn: 335066
This value is the first vector instruction type in numerical order. The
previous value was incorrect, leaving TypeCVI_GATHER outside of the range
for vector instructions. This caused vector .new instructions to be
incorrectly encoded in the presence of gather.
llvm-svn: 335065
FMA3Info only exists as a managed static. As far as I know the ManagedStatic construction proccess is thread safe. It doesn't look like we ever access the ManagedStatic object without immediately doing a query on it that would require the map to be populated. So I don't think we're ever deferring the calculation of the tables from the construction of the object.
So I think we should be able to just populate the FMA3Info map directly in the constructor and get rid of all of the initGroupsOnce stuff.
Differential Revision: https://reviews.llvm.org/D48194
llvm-svn: 335064
There are no provided instruction definitions for this architecture.
Reviewers: smaksimovic, atanasyan, abeserminji
Differential Revision: https://reviews.llvm.org/D48320
llvm-svn: 335057
Previously, some aliases were marked as not being available for microMIPS32R6,
but this was overridden at the top level.
Reviewers: atanasyan, abeserminji, smaksimovic
Differential Revision: https://reviews.llvm.org/D48321
llvm-svn: 335053
The getArithmeticInstrCost calls for shuffle vectors entry costs specify TargetTransformInfo::OperandValueKind arguments, but are just using the method's default values. This seems to be a copy + paste issue and doesn't affect the costs in anyway. The TargetTransformInfo::OperandValueProperties default arguments are already not being used.
Noticed while working on D47985.
Differential Revision: https://reviews.llvm.org/D48008
llvm-svn: 335045
This patch replaces calls to X86-specific intrinsics with floor-ceil semantics
with calls to target-independent @llvm.floor.* and @llvm.ceil.* intrinsics. This
doesn't affect the resulting machine code, as those intrinsics are lowered to
the same instructions, but exposes these specific rounding cases to generic
optimizations.
Differential Revision: https://reviews.llvm.org/D48067
llvm-svn: 335039
This patch handles back-end folding of generic patterns created by lowering the
X86 rounding intrinsics to native IR in cases where the instruction isn't a
straightforward packed values rounding operation, but a masked operation or a
scalar operation.
Differential Revision: https://reviews.llvm.org/D45203
llvm-svn: 335037
LoopSimplifyCFG, being a loop pass, needs to preserve scalar
evolution. This invalidates SE for the loops altered during
block merging.
Differential Revision: https://reviews.llvm.org/D48258
llvm-svn: 335036
This is a fixup for r334830 causing problems in polly-aosp buildbot.
Focus in r334830 was to fix a problem seen with
ConvertDebugDeclareToDebugValue involving store instructions.
It also added some asserts to find out of similar problems
existed for the ConvertDebugDeclareToDebugValue functions
involving load and phi instructions. One of those asserts seems
to blow in the polly-aosp buildbot, so I'll revert the asserts
while debugging.
llvm-svn: 335031
This patch moves the logic to handle reduction PHI nodes to the end of
adjustLoopBranches. Reduction PHI nodes in the outer loop header can be
moved to the inner loop header and reduction PHI nodes from the inner loop
header can be moved to the outer loop header. In the latter situation,
we have to deal with 1 kind of PHI nodes:
PHI nodes that are part of inner loop-only reductions.
We can replace the PHI node with the value coming from outside
the inner loop.
Reviewers: mcrosier, efriedma, karthikthecool
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D46198
llvm-svn: 335027
and expand it post RA basing on the register pressure. However, we miss to do the add-imm peephole for these pseudo instruction.
Differential Revision: https://reviews.llvm.org/D47568
Reviewed By: Nemanjai
llvm-svn: 335024
This patch adds logic to deal with the following constructions:
%iv = phi i64 ...
%trunc = trunc i64 %iv to i32
%cmp = icmp <pred> i32 %trunc, %invariant
Replacing it with
%iv = phi i64 ...
%cmp = icmp <pred> i64 %iv, sext/zext(%invariant)
In case if it is legal. Specifically, if `%iv` has signed comparison users, it is
required that `sext(trunc(%iv)) == %iv`, and if it has unsigned comparison
uses then we require `zext(trunc(%iv)) == %iv`. The current implementation
bails if `%trunc` has other uses than `icmp`, but in theory we can handle more
cases here (e.g. if the user of trunc is bitcast).
Differential Revision: https://reviews.llvm.org/D47928
Reviewed By: reames
llvm-svn: 335020
This adds an EVEX2VEXOverride string to the X86 instruction class in X86InstrFormats.td. If this field is set it will add manual entry in the EVEX->VEX tables that doesn't check the encoding information.
Then use this mechanism to map VMOVDU/A8/16, 128-bit VALIGN, and VPSHUFF/I instructions to VEX instructions.
Finally, remove the manual table from the emitter.
This has the bonus of fully sorting the autogenerated EVEX->VEX tables by their EVEX instruction enum value. We may be able to use this to do a binary search for the conversion and get rid of the need to create a DenseMap.
llvm-svn: 335018
EVEX makes heavy use of the VEX.W bit to indicate 64-bit element vs 32-bit elements. Many of the VEX instructions were split into 2 versions with different masking granularity.
The EVEX->VEX table generate can collapse the two versions if the VEX version uses is tagged as VEX_WIG. But if the VEX version is instead marked VEX.W==0 we can't combine them because we don't know if there is also a VEX version with VEX.W==1.
This patch adds a new VEX_W1X tag that indicates the EVEX instruction encodes with VEX.W==1, but is safe to convert to a VEX instruction with VEX.W==0.
This allows us to remove a bunch of manual EVEX->VEX table entries. We may want to look into splitting up the VEX_WPrefix field which would simplify the disassembler.
llvm-svn: 335017
This reverts r334428. It incorrectly marks some multiplications as nuw. Tim
Shen is working on a proper fix.
Original commit message:
[SCEV] Add nuw/nsw to mul ops in StrengthenNoWrapFlags where safe.
Summary:
Previously we would add them for adds, but not multiplies.
llvm-svn: 335016
The code was previously checking the L2 and L flag on 3 separate lines, treating the combination as an encoding. Instead its better to think of the L2 bit as being something that can't be done with VEX and early returning. Then we just need to check the L bit.
llvm-svn: 335015
Summary:
Added more utility functions that will be used in EH-related passes Also
changed `LoopBottom` function to `getBottom` and uses templates to be
able to handle other classes as well, which will be used in CFGSort
later.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D48262
llvm-svn: 335006
Summary:
Add WasmEHFuncInfo and routines to calculate and fill in this struct to
keep track of unwind destination information. This will be used in
other EH related passes.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, chrib, llvm-commits
Differential Revision: https://reviews.llvm.org/D48263
llvm-svn: 335005
Summary:
This patch changes the rethrow instruction to take a BB argument in LLVM
backend, like `br` and `br_if`s. This BB is a target catch BB the
rethrow instruction unwinds to. This BB argument will be converted to an
relative depth immediate at the end of CFGStackify pass, as in the same
way of branches.
RETHROW_TO_CALLER is a codegen-only instruction that should be used when
a rethrow instruction does not have an unwind destination BB, i.e., it
should rethrow to its caller function.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D48260
llvm-svn: 334998
Summary: This patch originated from D46562 and is a proper subset, with some issues addressed.
Reviewers: spatel, hfinkel, wristow, arsenm, javed.absar
Reviewed By: spatel
Subscribers: wdng, nhaehnle
Differential Revision: https://reviews.llvm.org/D47909
llvm-svn: 334996
The instructions that use this class don't have another source register. So I think this was just marking one of the address operands as ReadAfterLd?
llvm-svn: 334994
This reverts commit f976cf4cca0794267f28b54e468007fd476d37d9.
I am reverting this because it causes break in a few bots and its going
to take me sometime to look at this.
llvm-svn: 334993
Summary:
Simplify blockaddress usage before giving up in MergeBlockIntoPredecessor
This is a missing small optimization in MergeBlockIntoPredecessor.
This helps with one simplifycfg test which expects this case to be handled.
Reviewers: davide, spatel, brzycki, asbirlea
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48284
llvm-svn: 334992
Summary:
One for register based, much like the existing definitions,
and one for stack based (suffix _S).
This allows us to use registers in most of LLVM (which works better),
and stack based in MC (which results in a simpler and more readable
assembler / disassembler).
Tried to keep this change as small as possible while passing tests,
follow-up commit will:
- Add reg->stack conversion in MI.
- Fix asm/disasm in MC to be stack based.
- Fix emitter to be stack based.
tests passing:
llvm-lit -v `find test -name WebAssembly`
test/CodeGen/WebAssembly
test/MC/WebAssembly
test/MC/Disassembler/WebAssembly
test/DebugInfo/WebAssembly
test/CodeGen/MIR/WebAssembly
test/tools/llvm-objdump/WebAssembly
Reviewers: dschuff, sbc100, jgravelle-google, sunfish
Subscribers: aheejin, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D48183
llvm-svn: 334985
Summary: Refactoring for all constant cases which require AllowNewConst and some staging for future fmf usage.
Reviewers: spatel, hfinkel, wristow
Reviewed By: spatel
Subscribers: nhaehnle
Differential Revision: https://reviews.llvm.org/D48289
llvm-svn: 334984
This patch uses the DiagnosticPredicate for SVE predicate patterns
to improve their diagnostics, now giving a 'invalid operand' diagnostic
if the type is not an immediate or one of the expected pattern
labels.
Reviewers: samparker, SjoerdMeijer, javed.absar, fhahn
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48220
llvm-svn: 334983
The variants added by this patch are:
- SQINC signed increment, e.g. sqinc x0, w0, all, mul #4
- SQDEC signed decrement, e.g. sqdec x0, w0, all, mul #4
- UQINC unsigned increment, e.g. uqinc w0, all, mul #4
- UQDEC unsigned decrement, e.g. uqdec w0, all, mul #4
This patch includes asmparser changes to parse a GPR64 as a GPR32 in
order to satisfy the constraint check:
x0 == GPR64(w0)
in:
sqinc x0, w0, all, mul #4
^___^ (must match)
Reviewers: rengolin, fhahn, SjoerdMeijer, samparker, javed.absar
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D47716
llvm-svn: 334980
Rather than having an exclusion list in tablegen sources, add a flag to the X86 instruction records that can be used to suppress checking for convertibility.
llvm-svn: 334971
This patch introduces a VPInstructionToVPRecipe transformation, which
allows us to generate code for a VPInstruction based VPlan re-using the
existing infrastructure.
Reviewers: dcaballe, hsaito, mssimpso, hfinkel, rengolin, mkuper, javed.absar, sguggill
Reviewed By: dcaballe
Differential Revision: https://reviews.llvm.org/D46827
llvm-svn: 334969
CompileOnDemandLayer2 is a replacement for CompileOnDemandLayer built on the ORC
Core APIs. Functions in added modules are extracted and compiled lazily.
CompileOnDemandLayer2 supports multithreaded JIT'd code, and compilation on
multiple threads.
llvm-svn: 334967
materializing weak symbols as strong.
This removes some elaborate flag tweaking and plays nicer with RuntimeDyld,
which relies of weak/common flags to determine whether it should emit a given
weak definition. (Switching to strong up-front makes it appear as if there is
already an overriding definition, which would require an extra back-channel to
override).
llvm-svn: 334966