Note: I didn't add a hasOneUse() check because the existing,
related fold doesn't have that check. I suspect that the
improved analysis and codegen make these some of the rare
canonicalization cases where we allow an increase in
instructions.
llvm-svn: 335597
When the condition code for an IT instruction is "AL" we get strange "15"
predicates on subsequent instructions. These are dealt with for most
instructions by treating them as "ARMCC::AL", but VFP takes a different path
which didn't have this code.
llvm-svn: 335594
IT instructions are allowed to have the 'AL' predicate, but it must never
result in an 'NV' predicated instruction. Essentially this means that all
branches must be 't' rather than 'e' if the predicate is 'AL'.
This patch adds a diagnostic for this during assembly (error because parsing
hits an assertion if allowed to continue) and an annotation during disassembly.
llvm-svn: 335593
changeToUnreachable may remove PHI nodes from executable blocks we found values
for and we would fail to replace them. By changing dead blocks to unreachable after
we replaced constants in all executable blocks, we ensure such PHI nodes are replaced
by their known value before.
Fixes PR37780.
Reviewers: efriedma, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D48421
llvm-svn: 335588
Summary:
This is a follow-up to r334830 and r335031.
In the valueCoversEntireFragment check we now also handle
the situation when there is a variable length array (VLA)
involved, and the length of the array has been reduced to
a constant.
The ConvertDebugDeclareToDebugValue functions that are related
to PHI nodes and load instructions now avoid inserting dbg.value
intrinsics when the value does not, for certain, cover the
variable/fragment that should be described.
In r334830 we assumed that the value always covered the entire
var/fragment and we had assertions in the code to show that
assumption. However, those asserts failed when compiling code
with VLAs, so we removed the asserts in r335031. Now when we
know that the valueCoversEntireFragment check can fail also for
PHI/Load instructions we avoid to insert the faulty dbg.value
intrinsic in such situations. Compared to the Store instruction
scenario we simply drop the dbg.value here (as the variable does
not change its value due to PHI/Load, so an earlier dbg.value
describing the variable should still be valid).
Reviewers: aprantl, vsk, efriedma
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48547
llvm-svn: 335580
Turn canonicalized subtraction back into (-1 - B) and combine it with (A + 1) into (A - B).
This is similar to the folding already done for (B ^ -1) + Const into (-1 + Const) - B.
Differential Revision: https://reviews.llvm.org/D48535
llvm-svn: 335579
These opcodes have a fixed type of i8 for their immediate and shouldn't have anything to do with the scalar shift amount used by target independent shift nodes.
llvm-svn: 335578
CallLoweringInfo's NumFixedArgs field gives the number of fixed arguments
before legalization. The ISD::OutputArg "Outs" array holds legalized
arguments, so when indexing into it to find the non-fixed arguemn, we need
to use the number of arguments after legalization.
Fixes PR37934.
llvm-svn: 335576
Summary:
Same idea as D48529, but restricted to X86 and done very late to avoid any surprises where subtract might be better for DAG combining.
This seems like the safest way to do this trick. And we consider doing it as a DAG combine later.
Reviewers: spatel, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48557
llvm-svn: 335575
Summary:
Adds a string saver to the ModuleSummaryIndex so it can store value
names in the case of adding a ValueInfo for a GUID when we don't
have the name stored in a Module string table. This is motivated
by the upcoming summary parser patch, where we will read value names
from the summary entry and want to store them, even when a Module
is not available.
Currently this allows us to store the name in the legacy bitcode case,
and I have added a test to show that.
Reviewers: pcc, dexonsmith
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, llvm-commits
Differential Revision: https://reviews.llvm.org/D47842
llvm-svn: 335570
This recommits r335562 and 335563 as a single commit.
The frontend will surround the intrinsic with the appropriate marshalling to/from a scalar type to match the sigature of the builtin that software expects.
By exposing the vXi1 type directly in the llvm intrinsic we make it available to optimizers much earlier. This can enable the scalar marshalling code to be optimized away.
llvm-svn: 335568
Summary:
Without this change we only add module paths to the combined index when
there is a module hash or at least one global value. Make this more
consistent by adding the module to the index whenever there is a summary
section, and it is a per-module summary (had a MODULE_CODE_SOURCE_FILENAME
record).
Since we will no longer add module paths lazily, add a new interface to get
the module info from the index that asserts it is already added.
Fixes PR37899.
Reviewers: Vlad, pcc
Subscribers: mehdi_amini, inglorion, steven_wu, llvm-commits
Differential Revision: https://reviews.llvm.org/D48511
llvm-svn: 335567
Summary:
I discovered when writing the summary parsing support that the
per-module index builder and writer are computing the GUID from the
value name alone (ignoring the linkage type). This was ok since those
GUID were not emitted in the bitcode, and there are never multiple
conflicting names in a single module.
However, I don't see a reason for making the GUID computation different
for the per-module case. It also makes things simpler on the parsing
side to have the GUID computation consistent. So this patch changes the
summary analysis phase and the per-module summary writer to compute the
GUID using the facility on the GlobalValue.
Reviewers: pcc, dexonsmith
Subscribers: llvm-commits, inglorion
Differential Revision: https://reviews.llvm.org/D47844
llvm-svn: 335560
unswitching of switches.
This works much like trivial unswitching of switches in that it reliably
moves the switch out of the loop. Here we potentially clone the entire
loop into each successor of the switch and re-point the cases at these
clones.
Due to the complexity of actually doing nontrivial unswitching, this
patch doesn't create a dedicated routine for handling switches -- it
would duplicate far too much code. Instead, it generalizes the existing
routine to handle both branches and switches as it largely reduces to
looping in a few places instead of doing something once. This actually
improves the results in some cases with branches due to being much more
careful about how dead regions of code are managed. With branches,
because exactly one clone is created and there are exactly two edges
considered, somewhat sloppy handling of the dead regions of code was
sufficient in most cases. But with switches, there are much more
complicated patterns of dead code and so I've had to move to a more
robust model generally. We still do as much pruning of the dead code
early as possible because that allows us to avoid even cloning the code.
This also surfaced another problem with nontrivial unswitching before
which is that we weren't as precise in reconstructing loops as we could
have been. This seems to have been mostly harmless, but resulted in
pointless LCSSA PHI nodes and other unnecessary cruft. With switches, we
have to get this *right*, and everything benefits from it.
While the testing may seem a bit light here because we only have two
real cases with actual switches, they do a surprisingly good job of
exercising numerous edge cases. Also, because we share the logic with
branches, most of the changes in this patch are reasonably well covered
by existing tests.
The new unswitch now has all of the same fundamental power as the old
one with the exception of the single unsound case of *partial* switch
unswitching -- that really is just loop specialization and not
unswitching at all. It doesn't fit into the canonicalization model in
any way. We can add a loop specialization pass that runs late based on
profile data if important test cases ever come up here.
Differential Revision: https://reviews.llvm.org/D47683
llvm-svn: 335553
This removes a "UDivFoldAction" in favor of a simple constant
matcher. In theory, the existing code could do more matching,
but I don't see any evidence or need for it. I've left a TODO
about using ValueTracking in case we see any regressions.
llvm-svn: 335545
std::lower_bound doesn't require the thing to search for to be the same type as the table entries. We just need to define an appropriate comparison function that can take an table entry and an intrinsic number.
llvm-svn: 335518
This avoids creating unnecessary casts if the IP used to be a dbg info
intrinsic. Fixes PR37727.
Reviewers: vsk, aprantl, sanjoy, efriedma
Reviewed By: vsk, efriedma
Differential Revision: https://reviews.llvm.org/D47874
llvm-svn: 335513
Summary:
The NetBSD Operating System installs debuginfo
files into /usr/libdata/debug, rather than other path
like in some other popular distribution.
This change makes llvm-symbolizer functional with
the basesystem executables.
Reviewers: joerg, vitalybuka
Reviewed By: vitalybuka
Subscribers: JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D48525
llvm-svn: 335511
The large code model allows code and data segments to exceed 2GB, which
means that some symbol references may require a displacement that cannot
be encoded as a displacement from RIP. The large PIC model even relaxes
the assumption that the GOT itself is within 2GB of all code. Therefore,
we need a special code sequence to materialize it:
.LtmpN:
leaq .LtmpN(%rip), %rbx
movabsq $_GLOBAL_OFFSET_TABLE_-.LtmpN, %rax # Scratch
addq %rax, %rbx # GOT base reg
From that, non-local references go through the GOT base register instead
of being PC-relative loads. Local references typically use GOTOFF
symbols, like this:
movq extern_gv@GOT(%rbx), %rax
movq local_gv@GOTOFF(%rbx), %rax
All calls end up being indirect:
movabsq $local_fn@GOTOFF, %rax
addq %rbx, %rax
callq *%rax
The medium code model retains the assumption that the code segment is
less than 2GB, so calls are once again direct, and the RIP-relative
loads can be used to access the GOT. Materializing the GOT is easy:
leaq _GLOBAL_OFFSET_TABLE_(%rip), %rbx # GOT base reg
DSO local data accesses will use it:
movq local_gv@GOTOFF(%rbx), %rax
Non-local data accesses will use RIP-relative addressing, which means we
may not always need to materialize the GOT base:
movq extern_gv@GOTPCREL(%rip), %rax
Direct calls are basically the same as they are in the small code model:
They use direct, PC-relative addressing, and the PLT is used for calls
to non-local functions.
This patch adds reasonably comprehensive testing of LEA, but there are
lots of interesting folding opportunities that are unimplemented.
I restricted the MCJIT/eh-lg-pic.ll test to Linux, since the large PIC
code model is not implemented for MachO yet.
Differential Revision: https://reviews.llvm.org/D47211
llvm-svn: 335508
With the static tables sorted we can binary search them directly for reg->mem lookups. This removes 6 DenseMaps that had to be created when X86InstrInfo is constructed.
We still have one Mem->Reg DenseMap for the reverse direction. This is created just as before by walking the reg->mem arrays to populate it.
Differential Revision: https://reviews.llvm.org/D48527
llvm-svn: 335501
This removes debug locations from ConstantSDNode and ConstantSDFPNode.
When this kind of node is materialized we no longer create a line table
entry which jumps back to the constant's first point of use. This makes
single-stepping behavior smoother, and it matches the model used by IR,
where Constants have no locations. See this thread for more context:
http://lists.llvm.org/pipermail/llvm-dev/2018-June/124164.html
I'd like to handle constant BuildVectorSDNodes and to try to eliminate
passing SDLocs to SelectionDAG::getConstant*() in follow-up commits.
Differential Revision: https://reviews.llvm.org/D48468
llvm-svn: 335497
There are quite a few if statements that enumerate all these cases. It gets
even worse in our fork of LLVM where we also have a Triple::cheri (which
is mips64 + CHERI instructions) and we had to update all if statements that
check for Triple::mips64 to also handle Triple::cheri. This patch helps to
reduce our diff to upstream and should also make some checks more readable.
Reviewed By: atanasyan
Differential Revision: https://reviews.llvm.org/D48548
llvm-svn: 335493
Note a normal select test is not currently possible because this
relies on input registers tracked in SIMachineFunctionInfo which
are not currently serializable in MIR, but this does work end-to-end
from the IR.
llvm-svn: 335490
I thought I fixed this in r308673, but that fix was
very broken. The assumption that any frame index can be used
in place of another was more widespread than I realized.
Even when stack slot sharing was disabled, this was still
replacing frame index uses with a different ID with a different
stack slot.
Really fix this by doing the coloring per-stack ID, so all of
the coloring logically done in a separate namespace. This is a lot
simpler than trying to figure out how to change the color if
the stack ID is different.
llvm-svn: 335488
If a function has sample to use, but cannot use them because of no debug
information, currently a warning will be issued to inform the missing
opportunity.
This warning assumes the binary generating the profile and the binary using
the profile are similar enough. It is not always the case. Sometimes even
if the binaries are not quite similar, we may still get some benefit by
using sampleFDO. In those cases, we may still want to apply sampleFDO but
not want to see a lot of such warnings pop up.
The patch adds an option for the warning.
Differential Revision: https://reviews.llvm.org/D48510
llvm-svn: 335484
We can prove that some delinearized subscripts do not wrap around to become
negative by the fact that they are from inbound geps of load/store locations.
This helps improve the delinearisation in cases where we can't prove that they
are non-negative from SCEV alone.
Differential Revision: https://reviews.llvm.org/D48481
llvm-svn: 335481
This should avoid relying on the pointee type
to get the alignment, particularly since pointee
types are supposed to be removed at some point.
Also fixes not getting the alignment for unsized types.
llvm-svn: 335478
Not only should SafepointIRVerifier ignore unreachable blocks (as suggested in https://reviews.llvm.org/D47011) but it also has to ignore dead blocks.
In @test2 (see the new tests):
br i1 true, label %right, label %left
left:
...
right:
...
merge:
%val = phi i8 addrspace(1)* [ ..., %left ], [ ..., %right ]
use %val
both left and right branches are reachable.
If they collide then SafepointIRVerifier reports an error.
Because of the foldable branch condition GVN finds the left branch dead and removes the phi node entry that merges values from right and left. Then the use comes from the right branch. This results in no collision.
So, SafepointIRVerifier ends up in different results depending on either GVN is run or not.
To solve this issue this patch adds Dead Block detection to SafepointIRVerifier which can ignore dead blocks while validating IR. The Dead Block detection algorithm is taken from GVN but modified to not split critical edges. That is needed to keep CFG unchanged by SafepointIRVerifier.
Patch by Yevgeny Rouban.
Reviewed By: anna, apilipenko, DaniilSuchkov
Differential Revision: https://reviews.llvm.org/D47441
llvm-svn: 335473