Commit Graph

5413 Commits

Author SHA1 Message Date
Sanjay Patel 7129c10cae merge consecutive loads that are offset from a base address
SelectionDAG::isConsecutiveLoad() was not detecting consecutive loads
when the first load was offset from a base address. 

This patch recognizes that pattern and subtracts the offset before comparing
the second load to see if it is consecutive.

The codegen change in the new test case improves from:

vmovsd	32(%rdi), %xmm0
vmovsd	48(%rdi), %xmm1 
vmovhpd	56(%rdi), %xmm1, %xmm1
vmovhpd	40(%rdi), %xmm0, %xmm0
vinsertf128	$1, %xmm1, %ymm0, %ymm0

To:

vmovups	32(%rdi), %ymm0

An existing test case is also improved from:

vmovsd	(%rdi), %xmm0
vmovsd	16(%rdi), %xmm1
vmovsd	24(%rdi), %xmm2
vunpcklpd	%xmm2, %xmm0, %xmm0 ## xmm0 = xmm0[0],xmm2[0]
vmovhpd	8(%rdi), %xmm1, %xmm3

To:

vmovsd	(%rdi), %xmm0
vmovsd	16(%rdi), %xmm1
vmovhpd	24(%rdi), %xmm0, %xmm0
vmovhpd	8(%rdi), %xmm1, %xmm1

This patch fixes PR21771 ( http://llvm.org/bugs/show_bug.cgi?id=21771 ).

Differential Revision: http://reviews.llvm.org/D6642

llvm-svn: 224379
2014-12-16 21:57:18 +00:00
JF Bastien 5d3280c7a7 x86-32: PUSHF/POPF use/def EFLAGS
Summary: As a side-quest for D6629 jvoung pointed out that I should use -verify-machineinstrs and this found a bug in x86-32's handling of EFLAGS for PUSHF/POPF. This patch fixes the use/def, and adds -verify-machineinstrs to all x86 tests which contain 'EFLAGS'. One exception: this patch leaves inline-asm-fpstack.ll as-is because it fails -verify-machineinstrs in a way unrelated to EFLAGS. This patch also modifies cmpxchg-clobber-flags.ll along the lines of what D6629 already does by also testing i386.

Test Plan: ninja check

Reviewers: t.p.northover, jvoung

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D6687

llvm-svn: 224359
2014-12-16 20:15:45 +00:00
Quentin Colombet d5e57b731f [CodeGenPrepare] Move sign/zero extensions near loads using type promotion.
This patch extends the optimization in CodeGenPrepare that moves a sign/zero
extension near a load when the target can combine them. The optimization may
promote any operations between the extension and the load to make that possible.

Although this optimization may be beneficial for all targets, in particular
AArch64, this is enabled for X86 only as I have not benchmarked it for other
targets yet.


** Context **

Most targets feature extended loads, i.e., loads that perform a zero or sign
extension for free. In that context it is interesting to expose such pattern in
CodeGenPrepare so that the instruction selection pass can form such loads.
Sometimes, this pattern is blocked because of instructions between the load and
the extension. When those instructions are promotable to the extended type, we
can expose this pattern.


** Motivating Example **

Let us consider an example:
define void @foo(i8* %addr1, i32* %addr2, i8 %a, i32 %b) {
  %ld = load i8* %addr1
  %zextld = zext i8 %ld to i32
  %ld2 = load i32* %addr2
  %add = add nsw i32 %ld2, %zextld
  %sextadd = sext i32 %add to i64
  %zexta = zext i8 %a to i32
  %addza = add nsw i32 %zexta, %zextld
  %sextaddza = sext i32 %addza to i64
  %addb = add nsw i32 %b, %zextld
  %sextaddb = sext i32 %addb to i64
  call void @dummy(i64 %sextadd, i64 %sextaddza, i64 %sextaddb)
  ret void
}

As it is, this IR generates the following assembly on x86_64:
[...]
  movzbl  (%rdi), %eax   # zero-extended load
  movl  (%rsi), %es      # plain load
  addl  %eax, %esi       # 32-bit add
  movslq  %esi, %rdi     # sign extend the result of add
  movzbl  %dl, %edx      # zero extend the first argument
  addl  %eax, %edx       # 32-bit add
  movslq  %edx, %rsi     # sign extend the result of add
  addl  %eax, %ecx       # 32-bit add
  movslq  %ecx, %rdx     # sign extend the result of add
[...]
The throughput of this sequence is 7.45 cycles on Ivy Bridge according to IACA.

Now, by promoting the additions to form more extended loads we would generate:
[...]
  movzbl  (%rdi), %eax   # zero-extended load
  movslq  (%rsi), %rdi   # sign-extended load
  addq  %rax, %rdi       # 64-bit add
  movzbl  %dl, %esi      # zero extend the first argument
  addq  %rax, %rsi       # 64-bit add
  movslq  %ecx, %rdx     # sign extend the second argument
  addq  %rax, %rdx       # 64-bit add
[...]
The throughput of this sequence is 6.15 cycles on Ivy Bridge according to IACA.

This kind of sequences happen a lot on code using 32-bit indexes on 64-bit
architectures.

Note: The throughput numbers are similar on Sandy Bridge and Haswell.


** Proposed Solution **

To avoid the penalty of all these sign/zero extensions, we merge them in the
loads at the beginning of the chain of computation by promoting all the chain of
computation on the extended type. The promotion is done if and only if we do not
introduce new extensions, i.e., if we do not degrade the code quality.
To achieve this, we extend the existing “move ext to load” optimization with the
promotion mechanism introduced to match larger patterns for addressing mode
(r200947).
The idea of this extension is to perform the following transformation:
ext(promotableInst1(...(promotableInstN(load))))
=>
promotedInst1(...(promotedInstN(ext(load))))

The promotion mechanism in that optimization is enabled by a new TargetLowering
switch, which is off by default. In other words, by default, the optimization
performs the “move ext to load” optimization as it was before this patch.


** Performance **

Configuration: x86_64: Ivy Bridge fixed at 2900MHz running OS X 10.10.
Tested Optimization Levels: O3/Os
Tests: llvm-testsuite + externals.
Results:
- No regression beside noise.
- Improvements:
CINT2006/473.astar:  ~2%
Benchmarks/PAQ8p: ~2%
Misc/perlin: ~3%

The results are consistent for both O3 and Os.

<rdar://problem/18310086>

llvm-svn: 224351
2014-12-16 19:09:03 +00:00
Robert Khasanov d04cd2fbfe [AVX512] Enable integer arithmetic lowering for AVX512BW/VL subsets.
Added lowering tests.

llvm-svn: 224349
2014-12-16 18:24:07 +00:00
Sanjay Patel e46d54f0bf combine consecutive subvector 16-byte loads into one 32-byte load
This is a fix for PR21709 ( http://llvm.org/bugs/show_bug.cgi?id=21709 ).
When we have 2 consecutive 16-byte loads that are merged into one 32-byte vector,
we can use a single 32-byte load instead. 
But we don't do this for SandyBridge / IvyBridge because they have slower 32-byte memops.
We also don't bother using 32-byte *integer* loads on a machine that only has AVX1 (btver2)
because those operands would have to be split in half anyway since there is no support for
32-byte integer math ops.

Differential Revision: http://reviews.llvm.org/D6492

llvm-svn: 224344
2014-12-16 16:30:01 +00:00
Simon Pilgrim dad5686881 Added missing tests for X86vzmovl folding. NFC.
llvm-svn: 224284
2014-12-15 22:45:48 +00:00
JF Bastien 388b8794c9 x86: Emit LOCK prefix after DATA16
Summary: x86 allows either ordering for the LOCK and DATA16 prefixes, but using GCC+GAS leads to different code generation than using LLVM. This change matches the order that GAS emits the x86 prefixes when a semicolon isn't used in inline assembly (see tc-i386.c comment before define LOCK_PREFIX), and helps simplify tooling that operates on the instruction's byte sequence (such as NaCl's validator). This change shouldn't have any performance impact.

Test Plan: ninja check

Reviewers: craig.topper, jvoung

Subscribers: jfb, llvm-commits

Differential Revision: http://reviews.llvm.org/D6630

llvm-svn: 224283
2014-12-15 22:34:58 +00:00
Duncan P. N. Exon Smith be7ea19b58 IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly.  These
are the matching assembly changes for the metadata/value split in
r223802.

  - Only use the `metadata` type when referencing metadata from a call
    intrinsic -- i.e., only when it's used as a `Value`.

  - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
    when referencing it from call intrinsics.

So, assembly like this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata !{i32 %v}, metadata !0)
      call void @llvm.foo(metadata !{i32 7}, metadata !0)
      call void @llvm.foo(metadata !1, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{metadata !3}, metadata !0)
      ret void, !bar !2
    }
    !0 = metadata !{metadata !2}
    !1 = metadata !{i32* @global}
    !2 = metadata !{metadata !3}
    !3 = metadata !{}

turns into this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata i32 %v, metadata !0)
      call void @llvm.foo(metadata i32 7, metadata !0)
      call void @llvm.foo(metadata i32* @global, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{!3}, metadata !0)
      ret void, !bar !2
    }
    !0 = !{!2}
    !1 = !{i32* @global}
    !2 = !{!3}
    !3 = !{}

I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines).  I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.

This is part of PR21532.

llvm-svn: 224257
2014-12-15 19:07:53 +00:00
Michael Kuperstein 47c97157ef [X86] Break false dependencies before partial register updates when the source operand is in memory
Adds the various "rm" instruction variants into the list of instructions that have a partial register update. Also adds all variants of SQRTSD that were missing in the original list.

Differential Revision: http://reviews.llvm.org/D6620

llvm-svn: 224246
2014-12-15 13:18:21 +00:00
Elena Demikhovsky 72860c341e AVX-512: Added EXPAND instructions and intrinsics.
llvm-svn: 224241
2014-12-15 10:03:52 +00:00
Robert Khasanov 37c3ad6c20 [AVX512] Enabling bit logic lowering
Added lowering tests.

llvm-svn: 224132
2014-12-12 17:02:18 +00:00
Robert Khasanov e82a3630b7 [AVX512] Enabling MIN/MAX lowering.
Added lowering tests.

llvm-svn: 224127
2014-12-12 15:10:43 +00:00
Andrea Di Biagio d65fd9facd Reapply "[MachineScheduler] Fix for PR21807: minor code difference building with/without -g."
This reapplies r224118 with a fix for test 'misched-code-difference-with-debug.ll'.
That test was failing on some buildbots because it was x86 specific but it was
missing a target triple.
Added an explicit triple to test misched-code-difference-with-debug.ll.

llvm-svn: 224126
2014-12-12 15:09:58 +00:00
Andrea Di Biagio 5634a54efc Revert: [MachineScheduler] Fix for PR21807: minor code difference building with/without -g.
Test 'misched-code-difference-with-debug.ll' was failing on some buildbots.

llvm-svn: 224121
2014-12-12 13:34:03 +00:00
Andrea Di Biagio 01236e3eca [MachineScheduler] Fix for PR21807: minor code difference building with/without -g.
This patch fixes the issue reported as PR21807. There was a minor difference
in the generated code depending on the -g flag.

The cause was that with -g the machine scheduler used a different
scheduling strategy. This decision was based on the number of instructions
in a schedule region and included debug instructions in that count.

This patch fixes the issue in MISched and provides a test.

Patch by Russell Gallop!

llvm-svn: 224118
2014-12-12 12:41:22 +00:00
Ahmed Bougacha 79c797443b [X86] Add a temporary testcase for PR21876/r223996.
llvm-svn: 224074
2014-12-11 23:07:52 +00:00
Cameron McInally 5fb084e798 [AVX512] Add support for 512b variable bit shift intrinsics.
llvm-svn: 224028
2014-12-11 17:13:05 +00:00
Elena Demikhovsky 908dbf48c8 AVX-512: Added all forms of COMPRESS instruction
+ intrinsics + tests

llvm-svn: 224019
2014-12-11 15:02:24 +00:00
Michael Kuperstein a1b1922827 Add newline missing in r224010.
llvm-svn: 224011
2014-12-11 11:30:20 +00:00
Michael Kuperstein 11165674dc [X86] When converting movs to pushes, don't assume MOVmi operand is an actual immediate
This should fix PR21878.

llvm-svn: 224010
2014-12-11 11:26:16 +00:00
Elena Demikhovsky fc081457f1 AVX-512: Fixed a bug in lowering setcc for MVT::i1 type
llvm-svn: 224008
2014-12-11 10:21:12 +00:00
Sanjay Patel e20437f9af Match new shuffle codegen for MOVHPD patterns
Add patterns to match SSE (shufpd) and AVX (vpermilpd) shuffle codegen
when storing the high element of a v2f64. The existing patterns were
only checking for an unpckh type of shuffle. 

http://llvm.org/bugs/show_bug.cgi?id=21791

Differential Revision: http://reviews.llvm.org/D6586

llvm-svn: 223929
2014-12-10 16:58:54 +00:00
Michael Kuperstein 0104ff6529 [X86] Make a code path in EltsFromConsecutiveLoads work only on vectors it expects
EltsFromConsecutiveLoads was apparently only ever called for 128-bit vectors, and assumed this implicitly. r223518 started calling it for AVX-sized vectors, causing the code path that had this assumption to crash.
This adds a check to make this path fire only for 128-bit vectors.

Differential Revision: http://reviews.llvm.org/D6579

llvm-svn: 223922
2014-12-10 08:46:12 +00:00
Robert Khasanov 8e8c39963d [AVX512] Added lowering for VBROADCASTSS/SD instructions.
Lowering patterns were written through avx512_broadcast_pat multiclass as pattern generates VBROADCAST and COPY_TO_REGCLASS nodes.
Added lowering tests.

llvm-svn: 223804
2014-12-09 18:45:30 +00:00
Chandler Carruth f57ac3bd22 [x86] Fix the test to actually test things for the CPU names, add the
missing barcelona CPU which that test uncovered, and remove the 32-bit
x86 CPUs which I really wasn't prepared to audit and test thoroughly.

If anyone wants to clean up the 32-bit only x86 CPUs, go for it.

Also, if anyone else wants to try to de-duplicate the AMD CPUs, that'd
be cool, but from the looks of it wouldn't save as much as it did for
the Intel CPUs.

llvm-svn: 223774
2014-12-09 14:25:55 +00:00
Chandler Carruth 5303c6fc6c [x86] Add a test for the CPU names that should have been in r223769.
llvm-svn: 223770
2014-12-09 11:19:57 +00:00
Michael Kuperstein c69bb43f35 [X86] Convert esp-relative movs of function arguments into pushes, step 1
This handles the simplest case for mov -> push conversion:
1. x86-32 calling convention, everything is passed through the stack.
2. There is no reserved call frame.
3. Only registers or immediates are pushed, no attempt to combine a mem-reg-mem sequence into a single PUSHmm.

Differential Revision: http://reviews.llvm.org/D6503

llvm-svn: 223757
2014-12-09 06:10:44 +00:00
Bruno Cardoso Lopes 27de9b0f70 [CompactUnwind] Fix register encoding logic
Fix a compact unwind encoding logic bug which would try to encode
more callee saved registers than it should, leading to early bail out
in the encoding logic and abusive use of DWARF frame mode unnecessarily.

Also remove no-compact-unwind.ll which was testing the wrong thing
based on this bug and move it to valid 'compact unwind' tests. Added
other few more tests too.

llvm-svn: 223676
2014-12-08 18:18:32 +00:00
Andrea Di Biagio d80836ed09 [X86] Improved tablegen patters for matching TZCNT/LZCNT.
Teach ISel how to match a TZCNT/LZCNT from a conditional move if the
condition code is X86_COND_NE.
Existing tablegen patterns only allowed to match TZCNT/LZCNT from a
X86cond with condition code equal to X86_COND_E. To avoid introducing
extra rules, I added an 'ImmLeaf' definition that checks if the
condition code is COND_E or COND_NE.

llvm-svn: 223668
2014-12-08 17:47:18 +00:00
Andrea Di Biagio 64bc246f3f [X86] Improved lowering of packed v8i16 vector shifts by non-constant count.
Before this patch, the backend sub-optimally expanded the non-constant shift
count of a v8i16 shift into a sequence of two 'movd' plus 'movzwl'.

With this patch the backend checks if the target features sse4.1. If so, then
it lets the shuffle legalizer deal with the expansion of the shift amount.

Example:
;;
define <8 x i16> @test(<8 x i16> %A, <8 x i16> %B) {
  %shamt = shufflevector <8 x i16> %B, <8 x i16> undef, <8 x i32> zeroinitializer
  %shl = shl <8 x i16> %A, %shamt
  ret <8 x i16> %shl
}
;;

Before (with -mattr=+avx):
  vmovd  %xmm1, %eax
  movzwl  %ax, %eax
  vmovd  %eax, %xmm1
  vpsllw  %xmm1, %xmm0, %xmm0
  retq

Now:
  vpxor  %xmm2, %xmm2, %xmm2
  vpblendw  $1, %xmm1, %xmm2, %xmm1
  vpsllw  %xmm1, %xmm0, %xmm0
  retq

llvm-svn: 223660
2014-12-08 14:36:51 +00:00
Chandler Carruth 84bbae06d6 [x86] Clean up the SSE1 test to use a slightly different pattern for
matching offsets. I don't expect this to really matter, but its what the
latest incarnation of my script for maintaining these tests happens to
produce, and so its simpler for me if everything matches.

llvm-svn: 223613
2014-12-07 17:16:00 +00:00
Chandler Carruth 3a91c6e60a [x86] Switch a constant selection test to use positive assertions and to
store to real pointers so that its clear that the right code is in fact
being generated.

llvm-svn: 223612
2014-12-07 17:15:58 +00:00
Chandler Carruth c8b6dc7749 [x86] Cleanup the combining vector shuffle tests a bit by merging
identical checks for different SSE variants into a single block.

llvm-svn: 223611
2014-12-07 17:15:56 +00:00
Chandler Carruth 1d7d7aa1f5 [x86] Clean up the shift lowering vector shuffle tests a bit using my
script. Notably this folds all the SSE cases together into a single
FileCheck block. It also adds a vex prefix.

llvm-svn: 223610
2014-12-07 17:15:53 +00:00
Hans Wennborg a81d1dd5da Add a proper triple to switch-jump-table.ll
llvm-svn: 223571
2014-12-06 02:08:16 +00:00
NAKAMURA Takumi cfc0354aaa llvm/test/CodeGen/X86/switch-jump-table.ll: Add explicit triple. Local labels have a prefix "." for targeting i686-cygming.
llvm-svn: 223570
2014-12-06 02:03:49 +00:00
Ahmed Bougacha 8b54286d1c [X86] Refactor PMOV[SZ]Xrm to add missing AVX2 patterns.
Most patterns will go away once the extload legalization changes land.

Differential Revision: http://reviews.llvm.org/D6125

llvm-svn: 223567
2014-12-06 01:31:07 +00:00
Hans Wennborg 08de833c1c SelectionDAG switch lowering: Replace unreachable default with most popular case.
This can significantly reduce the size of the switch, allowing for more
efficient lowering.

I also worked with the idea of exploiting unreachable defaults by
omitting the range check for jump tables, but always ended up with a
non-neglible binary size increase. It might be worth looking into some more.

SimplifyCFG currently does this transformation, but I'm working towards changing
that so we can optimize harder based on unreachable defaults.

Differential Revision: http://reviews.llvm.org/D6510

llvm-svn: 223566
2014-12-06 01:28:50 +00:00
Sanjay Patel 4bf9b7685c Optimize merging of scalar loads for 32-byte vectors [X86, AVX]
Fix the poor codegen seen in PR21710 ( http://llvm.org/bugs/show_bug.cgi?id=21710 ).
Before we crack 32-byte build vectors into smaller chunks (and then subsequently
glue them back together), we should look for the easy case where we can just load
all elements in a single op.

An example of the codegen change is:

From:

vmovss  16(%rdi), %xmm1
vmovups (%rdi), %xmm0
vinsertps       $16, 20(%rdi), %xmm1, %xmm1
vinsertps       $32, 24(%rdi), %xmm1, %xmm1
vinsertps       $48, 28(%rdi), %xmm1, %xmm1
vinsertf128     $1, %xmm1, %ymm0, %ymm0
retq

To:

vmovups (%rdi), %ymm0
retq

Differential Revision: http://reviews.llvm.org/D6536

llvm-svn: 223518
2014-12-05 21:28:14 +00:00
Jan Wen Voung f547861ba0 Use 32-bit ebp for NaCl64 in a limited case: llvm.frameaddress.
Summary:
Follow up to [x32] "Use ebp/esp as frame and stack pointer":
http://reviews.llvm.org/D4617

In that earlier patch, NaCl64 was made to always use rbp.
That's needed for most cases because rbp should hold a full
64-bit address within the NaCl sandbox so that load/stores
off of rbp don't require sandbox adjustment (zeroing the top
32-bits, then filling those by adding r15).

However, llvm.frameaddress returns a pointer and pointers
are 32-bit for NaCl64. In this case, use ebp instead, which
will make the register copy type check. A similar mechanism
may be needed for llvm.eh.return, but is not added in this change.

Test Plan: test/CodeGen/X86/frameaddr.ll

Reviewers: dschuff, nadav

Subscribers: jfb, llvm-commits

Differential Revision: http://reviews.llvm.org/D6514

llvm-svn: 223510
2014-12-05 20:55:53 +00:00
Andrea Di Biagio 3e425c8d19 [X86] Improved lowering of packed vector shifts to vpsllq/vpsrlq.
SSE2/AVX non-constant packed shift instructions only use the lower 64-bit of
the shift count. 

This patch teaches function 'getTargetVShiftNode' how to deal with shifts
where the shift count node is of type MVT::i64.

Before this patch, function 'getTargetVShiftNode' only knew how to deal with
shift count nodes of type MVT::i32. This forced the backend to wrongly
truncate the shift count to MVT::i32, and then zero-extend it back to MVT::i64.

llvm-svn: 223505
2014-12-05 20:02:22 +00:00
Andrea Di Biagio 2876a67312 [X86] Avoid introducing extra shuffles when lowering packed vector shifts.
When lowering a vector shift node, the backend checks if the shift count is a
shuffle with a splat mask. If so, then it introduces an extra dag node to
extract the splat value from the shuffle. The splat value is then used
to generate a shift count of a target specific shift.

However, if we know that the shift count is a splat shuffle, we can use the
splat index 'I' to extract the I-th element from the first shuffle operand.
The advantage is that the splat shuffle may become dead since we no longer
use it.

Example:

;;
define <4 x i32> @example(<4 x i32> %a, <4 x i32> %b) {
  %c = shufflevector <4 x i32> %b, <4 x i32> undef, <4 x i32> zeroinitializer
  %shl = shl <4 x i32> %a, %c
  ret <4 x i32> %shl
}
;;

Before this patch, llc generated the following code (-mattr=+avx):
  vpshufd $0, %xmm1, %xmm1   # xmm1 = xmm1[0,0,0,0]
  vpxor  %xmm2, %xmm2
  vpblendw $3, %xmm1, %xmm2, %xmm1 # xmm1 = xmm1[0,1],xmm2[2,3,4,5,6,7]
  vpslld %xmm1, %xmm0, %xmm0
  retq

With this patch, the redundant splat operation is removed from the code.
  vpxor  %xmm2, %xmm2
  vpblendw $3, %xmm1, %xmm2, %xmm1 # xmm1 = xmm1[0,1],xmm2[2,3,4,5,6,7]
  vpslld %xmm1, %xmm0, %xmm0
  retq

llvm-svn: 223461
2014-12-05 12:13:30 +00:00
Michael Kuperstein 0492bd2b9e [X86] Improve a dag-combine that handles a vector extract -> zext sequence.
The current DAG combine turns a sequence of extracts from <4 x i32> followed by zexts into a store followed by scalar loads.
According to measurements by Martin Krastev (see PR 21269) for x86-64, a sequence of an extract, movs and shifts gives better performance. However, for 32-bit x86, the previous sequence still seems better.

Differential Revision: http://reviews.llvm.org/D6501

llvm-svn: 223360
2014-12-04 13:49:51 +00:00
Patrik Hagglund d06de4b954 Use DomTree in MachineSink to sink over diamonds.
According to a previous FIXME comment we now not only look at MBB
successors, but also handle code sinking past them:

  x = computation
  if () {} else {}
  use x

The instruction could be sunk over the whole diamond for the
if/then/else (or loop, etc), allowing it to be sunk into other blocks
after that.

Modified test added in r204522, due to one spill less present.

Minor fixes in comments.

Patch provided by Jonas Paulsson. Reviewed by Hal Finkel.

llvm-svn: 223350
2014-12-04 10:36:42 +00:00
Elena Demikhovsky f1de34b84d Masked Load / Store Intrinsics - the CodeGen part.
I'm recommiting the codegen part of the patch.
The vectorizer part will be send to review again.

Masked Vector Load and Store Intrinsics.
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)

Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.

http://reviews.llvm.org/D6191

llvm-svn: 223348
2014-12-04 09:40:44 +00:00
Michael Liao d8faa61b20 [X86] Restore X86 base pointer after call to llvm.eh.sjlj.setjmp
Commit on 

- This patch fixes the bug described in
  http://lists.cs.uiuc.edu/pipermail/llvmdev/2013-May/062343.html

The fix allocates an extra slot just below the GPRs and stores the base pointer
there. This is done only for functions containing llvm.eh.sjlj.setjmp that also
need a base pointer. Because code containing llvm.eh.sjlj.setjmp saves all of
the callee-save GPRs in the prologue, the offset to the extra slot can be
computed before prologue generation runs.

Impact at run-time on affected functions is::

  - One extra store in the prologue, The store saves the base pointer.
  - One extra load after a llvm.eh.sjlj.setjmp. The load restores the base pointer.

Because the extra slot is just above a gap between frame-pointer-relative and
base-pointer-relative chunks of memory, there is no impact on other offset
calculations other than ensuring there is room for the extra slot.

http://reviews.llvm.org/D6388

Patch by Arch Robison <arch.robison@intel.com>

llvm-svn: 223329
2014-12-04 00:56:38 +00:00
Quentin Colombet 079aba733a [RegAllocFast] Handle implicit definitions conservatively.
Prior to this commit, physical registers defined implicitly were considered free
right after their definition, i.e.. like dead definitions. Therefore, their uses
had to immediately follow their definitions, otherwise the related register may
be reused to allocate a virtual register.

This commit fixes this assumption by keeping implicit definitions alive until
they are actually used. The downside is that if the implicit definition was dead
(and not marked at such), we block an otherwise available register. This is
however conservatively correct and makes the fast register allocator much more
robust in particular regarding the scheduling of the instructions.

Fixes PR21700.

llvm-svn: 223317
2014-12-03 23:38:08 +00:00
Peter Collingbourne 51d2de7b9e Prologue support
Patch by Ben Gamari!

This redefines the `prefix` attribute introduced previously and
introduces a `prologue` attribute.  There are a two primary usecases
that these attributes aim to serve,

  1. Function prologue sigils

  2. Function hot-patching: Enable the user to insert `nop` operations
     at the beginning of the function which can later be safely replaced
     with a call to some instrumentation facility

  3. Runtime metadata: Allow a compiler to insert data for use by the
     runtime during execution. GHC is one example of a compiler that
     needs this functionality for its tables-next-to-code functionality.

Previously `prefix` served cases (1) and (2) quite well by allowing the user
to introduce arbitrary data at the entrypoint but before the function
body. Case (3), however, was poorly handled by this approach as it
required that prefix data was valid executable code.

Here we redefine the notion of prefix data to instead be data which
occurs immediately before the function entrypoint (i.e. the symbol
address). Since prefix data now occurs before the function entrypoint,
there is no need for the data to be valid code.

The previous notion of prefix data now goes under the name "prologue
data" to emphasize its duality with the function epilogue.

The intention here is to handle cases (1) and (2) with prologue data and
case (3) with prefix data.

References
----------

This idea arose out of discussions[1] with Reid Kleckner in response to a
proposal to introduce the notion of symbol offsets to enable handling of
case (3).

[1] http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-May/073235.html

Test Plan: testsuite

Differential Revision: http://reviews.llvm.org/D6454

llvm-svn: 223189
2014-12-03 02:08:38 +00:00
Simon Pilgrim 6b988ad8f2 [X86][SSE] Keep 4i32 vector insertions in integer domain on SSE4.1 targets
4i32 shuffles for single insertions into zero vectors lowers to X86vzmovl which was using (v)blendps - causing domain switch stalls. This patch fixes this by using (v)pblendw instead.

The updated tests on test/CodeGen/X86/sse41.ll still contain a domain stall due to the use of insertps - I'm looking at fixing this in a future patch.

Differential Revision: http://reviews.llvm.org/D6458

llvm-svn: 223165
2014-12-02 22:31:23 +00:00
Philip Reames 1a1bdb22bf [Statepoints 3/4] Statepoint infrastructure for garbage collection: SelectionDAGBuilder
This is the third patch in a small series.  It contains the CodeGen support for lowering the gc.statepoint intrinsic sequences (223078) to the STATEPOINT pseudo machine instruction (223085).  The change also includes the set of helper routines and classes for working with gc.statepoints, gc.relocates, and gc.results since the lowering code uses them.  

With this change, gc.statepoints should be functionally complete.  The documentation will follow in the fourth change, and there will likely be some cleanup changes, but interested parties can start experimenting now.

I'm not particularly happy with the amount of code or complexity involved with the lowering step, but at least it's fairly well isolated.  The statepoint lowering code is split into it's own files and anyone not working on the statepoint support itself should be able to ignore it.  

During the lowering process, we currently spill aggressively to stack. This is not entirely ideal (and we have plans to do better), but it's functional, relatively straight forward, and matches closely the implementations of the patchpoint intrinsics.  Most of the complexity comes from trying to keep relocated copies of values in the same stack slots across statepoints.  Doing so avoids the insertion of pointless load and store instructions to reshuffle the stack.  The current implementation isn't as effective as I'd like, but it is functional and 'good enough' for many common use cases.  

In the long term, I'd like to figure out how to integrate the statepoint lowering with the register allocator.  In principal, we shouldn't need to eagerly spill at all.  The register allocator should do any spilling required and the statepoint should simply record that fact.  Depending on how challenging that turns out to be, we may invest in a smarter global stack slot assignment mechanism as a stop gap measure.  

Reviewed by: atrick, ributzka

llvm-svn: 223137
2014-12-02 18:50:36 +00:00
Reid Kleckner 35fc363ce8 Parse 'ghccc' in .ll files as the GHC convention (cc 10)
Previously we just used "cc 10" in the .ll files, but that isn't very
human readable.

llvm-svn: 223076
2014-12-01 21:04:44 +00:00
Hans Wennborg 5bef5b522b Revert r223049, r223050 and r223051 while investigating test failures.
I didn't foresee affecting the Clang test suite :/

llvm-svn: 223054
2014-12-01 17:36:43 +00:00
Hans Wennborg 1571336fb2 SelectionDAG switch lowering: Replace unreachable default with most popular case.
This can significantly reduce the size of the switch, allowing for more
efficient lowering.

I also worked with the idea of exploiting unreachable defaults by
omitting the range check for jump tables, but always ended up with a
non-neglible binary size increase. It might be worth looking into some more.

llvm-svn: 223049
2014-12-01 17:08:32 +00:00
Akira Hatanaka b9991a2656 [stack protector] Set edge weights for newly created basic blocks.
This commit fixes a bug in stack protector pass where edge weights were not set
when new basic blocks were added to lists of successor basic blocks.

Differential Revision: http://reviews.llvm.org/D5766

llvm-svn: 222987
2014-12-01 04:27:03 +00:00
Hans Wennborg 6c42d1a5de Switch lowering: Fix broken 'Figure out which block is next' code
This doesn't seem to have worked in a long time, but other optimizations
would clean it up.

llvm-svn: 222961
2014-11-29 21:17:05 +00:00
Duncan P. N. Exon Smith 9bc81fbe92 Revert "Masked Vector Load and Store Intrinsics."
This reverts commit r222632 (and follow-up r222636), which caused a host
of LNT failures on an internal bot.  I'll respond to the commit on the
list with a reproduction of one of the failures.

Conflicts:
	lib/Target/X86/X86TargetTransformInfo.cpp

llvm-svn: 222936
2014-11-28 21:29:14 +00:00
Sanjay Patel e57f3c0a42 Enable FeatureFastUAMem for btver2
Allow unaligned 16-byte memop codegen for btver2. No functional changes for any other subtargets.

Replace the existing supposed small memcpy test with an actual test of a small memcpy. 
The previous test wasn't using FileCheck either.

This patch should allow us to close PR21541 ( http://llvm.org/bugs/show_bug.cgi?id=21541 ).

Differential Revision: http://reviews.llvm.org/D6360

llvm-svn: 222925
2014-11-28 18:40:18 +00:00
Elena Demikhovsky 905a5a606f AVX-512: Scalar ERI intrinsics
including SAE mode and memory operand.
Added AVX512_maskable_scalar template, that should cover all scalar instructions in the future.

The main difference between AVX512_maskable_scalar<> and AVX512_maskable<> is using X86select instead of vselect.
I need it, because I can't create vselect node for MVT::i1 mask for scalar instruction.

http://reviews.llvm.org/D6378

llvm-svn: 222820
2014-11-26 10:46:49 +00:00
Simon Pilgrim 371417db34 [X86][SSE] Improvements to byte shift shuffle matching
Since (v)pslldq / (v)psrldq instructions resolve to a single input argument it is useful to match it much earlier than we currently do - this prevents more complicated shuffles (notably insertion into a zero vector) matching before it.

Differential Revision: http://reviews.llvm.org/D6409

llvm-svn: 222796
2014-11-25 22:34:59 +00:00
Cameron McInally 9b7c15a364 [AVX512] Add 512b integer shift by variable intrinsics and patterns.
llvm-svn: 222786
2014-11-25 20:41:51 +00:00
Andrea Di Biagio 23e2cfa834 [X86] Improved target specific combine on VSELECT dag nodes.
This patch teaches function 'transformVSELECTtoBlendVECTOR_SHUFFLE' how to
convert VSELECT dag nodes to shuffles on targets that do not have SSE4.1.
On pre-SSE4.1 targets, we can still perform blend operations using movss/movsd.

Also, removed a target specific combine that performed a premature lowering of
VSELECT nodes to target specific MOVSS/MOVSD nodes.

llvm-svn: 222647
2014-11-24 12:23:15 +00:00
Michael Kuperstein 9ef90647b9 [X86] Fixes bug in build_vector v4x32 lowering
r222375 made some improvements to build_vector lowering of v4x32 and v4xf32 into an insertps, but it missed a case where:

1. A single extracted element is used twice.
2. The lower of the two non-zero indexes should be preserved, and the higher should be used for the dest mask.

This caused a crash, since the source value for the insertps ends-up uninitialized.

Differential Revision: http://reviews.llvm.org/D6377

llvm-svn: 222635
2014-11-23 13:09:06 +00:00
Elena Demikhovsky 9e5089a938 Masked Vector Load and Store Intrinsics.
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)

Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.

http://reviews.llvm.org/D6191

llvm-svn: 222632
2014-11-23 08:07:43 +00:00
Chandler Carruth 8c44d86ab8 [x86] Add some tests for a common unpack pattern of vector shuffle that
has a remarkably unique and efficient lowering.

While we get this some of the time already, we miss a few cases and
there wasn't a principled reason we got it. We should at least test
this. v8 already has tests for this pattern.

llvm-svn: 222607
2014-11-22 05:44:43 +00:00
Sanjay Patel 501890e909 Add a feature flag for slow 32-byte unaligned memory accesses [x86].
This patch adds a feature flag to avoid unaligned 32-byte load/store AVX codegen
for Sandy Bridge and Ivy Bridge. There is no functionality change intended for 
those chips. Previously, the absence of AVX2 was being used as a proxy to detect
this feature. But that hindered codegen for AVX-enabled AMD chips such as btver2
that do not have the 32-byte unaligned access slowdown.

Performance measurements are included in PR21541 ( http://llvm.org/bugs/show_bug.cgi?id=21541 ).

Differential Revision: http://reviews.llvm.org/D6355

llvm-svn: 222544
2014-11-21 17:40:04 +00:00
Chandler Carruth ce5a26b0e7 [x86] Restructure the checking patterns for v16 and v32 avx2 vector
shuffle lowering to allow much better blend matching.

Specifically, with the new structure the code seems clearer to me and we
correctly can hit the cases where merging two 128-bit lanes is a clear
win and can be shuffled cheaply afterward.

llvm-svn: 222539
2014-11-21 14:53:03 +00:00
Chandler Carruth 6c4d1ea8c4 [x86] Make the previous logic significantly less conservative and get
a bunch more improvements.

Non-lane-crossing is fine, the key is that lane merging only makes sense
for single-input shuffles. Not sure why I got so turned around here. The
code all works, I was just using the wrong model for it.

This only updates v4 and v8 lowering. The v16 and v32 lowering requires
restructuring the entire check sequence.

llvm-svn: 222537
2014-11-21 14:33:24 +00:00
Andrea Di Biagio 0225b5bf6f [DAG] Teach how to turn a build_vector into a shuffle if some of the operands are zero.
Before this patch, the DAGCombiner only tried to convert build_vector dag nodes
into shuffles if all operands were either extract_vector_elt or undef.

This patch improves that logic and teaches the DAGCombiner how to deal with
build_vector dag nodes where one or more operands are zero. A build_vector
dag node with some zero operands is turned into a shuffle only if the resulting
shuffle mask is legal for the target.

llvm-svn: 222536
2014-11-21 14:32:06 +00:00
Chandler Carruth d2b19bc867 [x86] Teach the x86 vector shuffle lowering to detect mergable 128-bit
lanes.

By special casing these we can often either reduce the total number of
shuffles significantly or reduce the number of (high latency on Haswell)
AVX2 shuffles that potentially cross 128-bit lanes. Even when these
don't actually cross lanes, they have much higher latency to support
that. Doing two of them and a blend is worse than doing a single insert
across the 128-bit lanes to blend and then doing a single interleaved
shuffle.

While this seems like a narrow case, it kept cropping up on me and the
difference is *huge* as you can see in many of the test cases. I first
hit this trying to perfectly fix the interleaving shuffle patterns used
by Halide for AVX2.

llvm-svn: 222533
2014-11-21 13:56:05 +00:00
Chandler Carruth 77e1a0ad1f [x86] Remove more windows line endings that slipped into this file...
llvm-svn: 222528
2014-11-21 12:33:46 +00:00
Chandler Carruth 61c7b6252c [x86] Add a bunch of test cases to 256-bit shuffles that exercise
merging 128-bit subvectors and also shuffling all the elements of those
subvectors. Currently we generate pretty bad code for many of these, but
I'm testing a patch that should dramatically improve this in addition to
making the shuffle lowering robust to other changes.

llvm-svn: 222525
2014-11-21 12:17:50 +00:00
Alexey Volkov fd1731d876 [X86] For Silvermont CPU use 16-bit division instead of 64-bit for small positive numbers
Differential Revision: http://reviews.llvm.org/D5938

llvm-svn: 222521
2014-11-21 11:19:34 +00:00
Quentin Colombet a7439d4483 [X86] Do not custom lower UINT_TO_FP when the target type does not
match the custom lowering.

<rdar://problem/19026326>

llvm-svn: 222489
2014-11-21 00:47:19 +00:00
Saleem Abdulrasool 2f3b3f3182 X86: use the correct alloca symbol for Windows Itanium
Windows itanium targets the MSVCRT, and the stack probe symbol is provided by
MSVCRT.  This corrects the emission of stack probes on i686-windows-itanium.

llvm-svn: 222439
2014-11-20 18:01:26 +00:00
Andrea Di Biagio 1b657bfcc8 [X86] Improved lowering of v4x32 build_vector dag nodes.
This patch improves the lowering of v4f32 and v4i32 build_vector dag nodes
that are known to have at least two non-zero elements.

With this patch, a build_vector that performs a blend with zero is 
converted into a shuffle. This is done to let the shuffle legalizer expand
the dag node in a optimal way. For example, if we know that a build_vector
performs a blend with zero, we can try to lower it as a movq/blend instead of
always selecting an insertps.

This patch also improves the logic that lowers a build_vector into a insertps
with zero masking. See for example the extra test cases added to test sse41.ll.

Differential Revision: http://reviews.llvm.org/D6311

llvm-svn: 222375
2014-11-19 19:34:29 +00:00
Simon Pilgrim 3ac3b251a9 [X86][SSE] pslldq/psrldq byte shifts/rotation for SSE2
This patch builds on http://reviews.llvm.org/D5598 to perform byte rotation shuffles (lowerVectorShuffleAsByteRotate) on pre-SSSE3 (palignr) targets - pre-SSSE3 is only enabled on i8 and i16 vector targets where it is a more definite performance gain.

I've also added a separate byte shift shuffle (lowerVectorShuffleAsByteShift) that makes use of the ability of the SLLDQ/SRLDQ instructions to implicitly shift in zero bytes to avoid the need to create a zero register if we had used palignr.

Differential Revision: http://reviews.llvm.org/D5699

llvm-svn: 222340
2014-11-19 10:06:49 +00:00
Simon Pilgrim 9c1e4123f8 [X86][AVX] 256-bit vector stack unaligned load/stores identification
Under many circumstances the stack is not 32-byte aligned, resulting in the use of the vmovups/vmovupd/vmovdqu instructions when inserting ymm reloads/spills.

This minor patch adds these instructions to the isFrameLoadOpcode/isFrameStoreOpcode helpers so that they can be correctly identified and not be treated as folded reloads/spills.

This has also been noticed by http://llvm.org/bugs/show_bug.cgi?id=18846 where it was causing redundant spills - I've added a reduced test case at test/CodeGen/X86/pr18846.ll

Differential Revision: http://reviews.llvm.org/D6252

llvm-svn: 222281
2014-11-18 23:38:19 +00:00
Alexey Volkov 7de210bd52 [X86] Use ADD/SUB instead of INC/DEC for Haswell and Broadwell CPUs
Differential Revision: http://reviews.llvm.org/D5934

llvm-svn: 222141
2014-11-17 16:17:51 +00:00
Bob Wilson a61a19037a Fix CR/LF line endings in test case.
llvm-svn: 222120
2014-11-17 08:00:45 +00:00
Andrea Di Biagio e13a0b81f4 [DAG] Improved target independent vector shuffle folding logic.
This patch teaches the DAGCombiner how to combine shuffles according to rules:
   shuffle(shuffle(A, Undef, M0), B, M1) -> shuffle(B, A, M2)
   shuffle(shuffle(A, B, M0), B, M1) -> shuffle(B, A, M2)
   shuffle(shuffle(A, B, M0), A, M1) -> shuffle(B, A, M2)

llvm-svn: 222090
2014-11-15 22:56:25 +00:00
Simon Pilgrim 6d675f4e35 [X86][SSE] Improve legal SHUFP and PSHUFD shuffle matching
Updated X86TargetLowering::isShuffleMaskLegal to match SHUFP masks with commuted inputs and PSHUFD masks that reference the second input.

As part of this I've refactored isPSHUFDMask to work in a more general manner and allow it to match against either the first or second input vector.

Differential Revision: http://reviews.llvm.org/D6287

llvm-svn: 222087
2014-11-15 21:13:05 +00:00
Cameron McInally 04400449c5 [AVX512] Add 512b masked integer shift by immediate patterns.
llvm-svn: 222002
2014-11-14 15:43:00 +00:00
Tim Northover d3be12a6c7 X86: use getConstant rather than getTargetConstant behind BUILD_VECTOR.
getTargetConstant should only be used when you can guarantee the instruction
selected will be able to cope with the raw value. BUILD_VECTOR is rather too
generic for this so we should use getConstant instead. In that case, an
instruction can still consume the constant, but if it doesn't it'll be
materialised through its own round of ISel.

Should fix PR21352.

llvm-svn: 221961
2014-11-14 01:30:14 +00:00
Reid Kleckner 283bc2ed28 Allow the use of functions as typeinfo in landingpad clauses
This is one step towards supporting SEH filter functions in LLVM.

llvm-svn: 221954
2014-11-14 00:35:50 +00:00
Chandler Carruth 99b261ce6d [x86] Add some tests for specific patterns of lane-flips combined with
in-lane shuffles that aren't always handled well by the current vector
shuffle lowering.

No functionality change yet, that will follow in a subsequent commit.

llvm-svn: 221938
2014-11-13 22:49:44 +00:00
Elena Demikhovsky d5e95b57e0 AVX-512: SINT_TO_FP cost model and some bugfixes
Checked some corner cases, for example translation
of <8 x i1> to <8 x double>

llvm-svn: 221883
2014-11-13 11:46:16 +00:00
Chandler Carruth fee91883f4 [x86] Teach the vector shuffle lowering to make a more nuanced decision
between splitting a vector into 128-bit lanes and recombining them vs.
decomposing things into single-input shuffles and a final blend.

This handles a large number of cases in AVX1 where the cross-lane
shuffles would be much more expensive to represent even though we end up
with a fast blend at the root. Instead, we can do a better job of
shuffling in a single lane and then inserting it into the other lanes.

This fixes the remaining bits of Halide's regression captured in PR21281
for AVX1. However, the bug persists in AVX2 because I've made this
change reasonably conservative. The cases where it makes sense in AVX2
to split into 128-bit lanes are much more rare because we can often do
full permutations across all elements of the 256-bit vector. However,
the particular test case in PR21281 is an example of one of the rare
cases where it is *always* better to work in a single 128-bit lane. I'm
going to try to teach the logic to detect and form the good code even in
AVX2 next, but it will need to use a separate heuristic.

Finally, there is one pesky regression here where we previously would
craftily use vpermilps in AVX1 to shuffle both high and low halves at
the same time. We no longer pull that off, and not for any really good
reason. Ultimately, I think this is just another missing nuance to the
selection heuristic that I'll try to add in afterward, but this change
already seems strictly worth doing considering the magnitude of the
improvements in common matrix math shuffle patterns.

As always, please let me know if this causes a surprising regression for
you.

llvm-svn: 221861
2014-11-13 04:06:10 +00:00
Chandler Carruth 253dd39a9a [x86] Don't form overly fragmented blends when splitting and
re-combining shuffles because nothing was available in the wider vector
type.

The key observation (which I've put in the comments for future
maintainers) is that at this point, no further combining is really
possible. And so even though these shuffles trivially could be combined,
we need to actually do that as we produce them when producing them this
late in the lowering.

This fixes another (huge) part of the Halide vector shuffle regressions.
As it happens, this was already well covered by the tests, but I hadn't
noticed how bad some of these got. The specific patterns that turn
directly into unpckl/h patterns were occurring *many* times in common
vector processing code.

There are still more problems here sadly, but trying to incrementally
tease them apart and it looks like this is the core of the problem in
the splitting logic.

There is some chance of regression here, you can see it in the test
changes. Specifically, where we stop forming pshufb in some cases, it is
possible that pshufb was in fact faster. Intel "says" that pshufb is
slower than the instruction sequences replacing it.

llvm-svn: 221852
2014-11-13 02:42:08 +00:00
Quentin Colombet f5485bb008 [CodeGenPrepare] Handle zero extensions in the TypePromotionHelper.
Prior to this patch the TypePromotionHelper was promoting only sign extensions.
Supporting zero extensions changes:
- How constants are extended.
- How sign extensions, zero extensions, and truncate are composed together.
- How the type of the extended operation is recorded. Now we need to know the
  kind of the extension as well as its type.

Each change is fairly small, unlike the diff.
Most of the diff are comments/variable renaming to say "extension" instead of
"sign extension".

The performance improvements on the test suite are within the noise.

Related to <rdar://problem/18310086>.

llvm-svn: 221851
2014-11-13 01:44:51 +00:00
Sanjay Patel f6f7d5d1dd Expose the number of Newton-Raphson iterations applied to the hardware's reciprocal estimate as a parameter (x86).
This is a follow-on to r221706 and r221731 and discussed in more detail in PR21385.

This patch also loosens the testcase checking for btver2. We know that the "1.0" will be loaded, but
we can't tell exactly when, so replace the CHECK-NEXT specifiers with plain CHECKs. The CHECK-NEXT
sequence relied on a quirk of post-RA-scheduling that may change independently of anything in these tests.

llvm-svn: 221819
2014-11-12 21:39:01 +00:00
Cameron McInally 73a6bca32b [AVX512] Add integer shift by immediate intrinsics.
llvm-svn: 221811
2014-11-12 19:58:54 +00:00
Chandler Carruth 0c922fcec5 [x86] Start improving the matching of unpck instructions based on test
cases from Halide folks. This initial step was extracted from
a prototype change by Clay Wood to try and address regressions found
with Halide and the new vector shuffle lowering.

llvm-svn: 221779
2014-11-12 10:05:18 +00:00
Chandler Carruth ce6947d4cf [x86] Clean up a bunch of vector shuffle tests with my script. Notably,
removes windows line endings and other noise. This is in prelude to
making substantive changes to these tests.

llvm-svn: 221776
2014-11-12 09:17:15 +00:00
Elena Demikhovsky be8808dc3f AVX-512: Intrinsics for ERI
3 instructions: vrcp28, vrsqrt28, vexp2, only vector forms.
Intrinsics include SAE (Suppres All Exceptions) parameter.

http://reviews.llvm.org/D6214

llvm-svn: 221774
2014-11-12 07:31:03 +00:00
Tom Roeder eb7a303d1b Add Forward Control-Flow Integrity.
This commit adds a new pass that can inject checks before indirect calls to
make sure that these calls target known locations. It supports three types of
checks and, at compile time, it can take the name of a custom function to call
when an indirect call check fails. The default failure function ignores the
error and continues.

This pass incidentally moves the function JumpInstrTables::transformType from
private to public and makes it static (with a new argument that specifies the
table type to use); this is so that the CFI code can transform function types
at call sites to determine which jump-instruction table to use for the check at
that site.

Also, this removes support for jumptables in ARM, pending further performance
analysis and discussion.

Review: http://reviews.llvm.org/D4167
llvm-svn: 221708
2014-11-11 21:08:02 +00:00
Sanjay Patel e2e589288f Use rcpss/rcpps (X86) to speed up reciprocal calcs (PR21385).
This is a first step for generating SSE rcp instructions for reciprocal
calcs when fast-math allows it. This is very similar to the rsqrt optimization
enabled in D5658 ( http://reviews.llvm.org/rL220570 ).

For now, be conservative and only enable this for AMD btver2 where performance
improves significantly both in terms of latency and throughput.

We may never enable this codegen for Intel Core* chips because the divider circuits
are just too fast. On SandyBridge, divss can be as fast as 10 cycles versus the 21
cycle critical path for the rcp + mul + sub + mul + add estimate.

Follow-on patches may allow configuration of the number of Newton-Raphson refinement
steps, add AVX512 support, and enable the optimization for more chips.

More background here: http://llvm.org/bugs/show_bug.cgi?id=21385

Differential Revision: http://reviews.llvm.org/D6175

llvm-svn: 221706
2014-11-11 20:51:00 +00:00
Rafael Espindola 07e694d293 Simplify testcase. NFC.
Thanks to Filipe Cabecinhas for the tip.

llvm-svn: 221705
2014-11-11 20:49:16 +00:00
Rafael Espindola a9c28b68cd Use a 8 bit immediate when possible.
This fixes pr21529.

llvm-svn: 221700
2014-11-11 19:46:36 +00:00
Dario Domizioli e904e85faf [X86][ELF] Fix PR20243 - leaf frame pointer bug with TLS access
The ISel lowering for global TLS access in PIC mode was creating a pseudo 
instruction that is later expanded to a call, but the code was not 
setting the hasCalls flag in the MachineFrameInfo alongside the adjustsStack 
flag. This caused some functions to be mistakenly recognized as leaf functions,
and this in turn affected the decision to eliminate the frame pointer.

With the fix, hasCalls is properly set and the leaf frame pointer is correctly
preserved.

llvm-svn: 221695
2014-11-11 18:44:49 +00:00
Andrea Di Biagio 5fa2e15453 [X86] Add missing check for 'isINSERTPSMask' in method 'isShuffleMaskLegal'.
This helps the DAGCombiner to identify more opportunities to fold shuffles.

llvm-svn: 221684
2014-11-11 11:20:31 +00:00