The primary use of the dump() functions in LLVM is for use in a
debugger. Unfortunately lldb does not seem to handle default arguments
so using `p SomeMI.dump()` fails and you have to type the longer `p
SomeMI.dump(nullptr)`. Remove the paramter to make the most common use
easy. (You can always construct something like `p
SomeMI.print(dbgs(),MyTII)` if you need more features).
Differential Revision: https://reviews.llvm.org/D29241
llvm-svn: 293440
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359
SUBREG_TO_REG takes a subregister index as 3rd operand, print the name
instead of a number. We already do the same for INSERT_SUBREG and
REG_SEQUENCE.
llvm-svn: 291481
we used to print UNKNOWN instructions when the instruction to be printer was not
yet inserted in any BB: in that case the pretty printer would not be able to
compute a TII as the instruction does not belong to any BB or function yet.
This patch explicitly passes the TII to the pretty-printer.
Differential Revision: https://reviews.llvm.org/D27645
llvm-svn: 290228
Summary:
MachineInstr::isIdenticalTo() is for some reason not
symmetric when comparing bundles, which gives us the
property:
I1->isIdenticalTo(*I2) != I2->isIdenticalTo(*I1)
when comparing bundles where one bundle is longer than
the other.
This patch makes sure that bundles of different length
always are considered as not being identical. Thus, the
result of the comparison will be the same regardless of
which side that happens to be to the left.
Reviewers: dexonsmith, jonpa, andrew.w.kaylor
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D27508
llvm-svn: 290095
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
Summary:
An IR load can be invariant, dereferenceable, neither, or both. But
currently, MI's notion of invariance is IR-invariant &&
IR-dereferenceable.
This patch splits up the notions of invariance and dereferenceability at
the MI level. It's NFC, so adds some probably-unnecessary
"is-dereferenceable" checks, which we can remove later if desired.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D23371
llvm-svn: 281151
Summary:
I want to separate out the notions of invariance and dereferenceability
at the MI level, so that they correspond to the equivalent concepts at
the IR level. (Currently an MI load is MI-invariant iff it's
IR-invariant and IR-dereferenceable.)
First step is renaming this function.
Reviewers: chandlerc
Subscribers: MatzeB, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D23370
llvm-svn: 281125
We want each register to have a canonical type, which means the best place to
store this is in MachineRegisterInfo rather than on every MachineInstr that
happens to use or define that register.
Most changes following from this are pretty simple (you need an MRI anyway if
you're going to be doing any transformations, so just check the type there).
But legalization doesn't really want to check redundant operands (when, for
example, a G_ADD only ever has one type) so I've made use of MCInstrDesc's
operand type field to encode these constraints and limit legalization's work.
As an added bonus, more validation is possible, both in MachineVerifier and
MachineIRBuilder (coming soon).
llvm-svn: 281035
That commit added a new version of Intrinsic::getName which should only
be called when the intrinsic has no overloaded types. There are several
debugging paths, such as SDNode::dump which are printing the name of the
intrinsic but don't have the overloaded types. These paths should be ok
to just print the name instead of crashing.
The fix here is ultimately to just add a 'None' second argument as that
calls the overload capable getName, which is less efficient, but this is a
debugging path anyway, and not perf critical.
Thanks to Björn Pettersson for pointing out that there were more crashes.
llvm-svn: 279528
LLT() has a particular meaning: it's one invalid type. But we really
want selected instructions to have no type whatsoever.
Also verify that types don't linger after ISel, and enable the verifier
on the AArch64 select test.
llvm-svn: 277001
This should be all the low-level instruction selection needs to determine how
to implement an operation, with the remaining context taken from the opcode
(e.g. G_ADD vs G_FADD) or other flags not based on type (e.g. fast-math).
llvm-svn: 276158
When SelectionDAGISel transforms a node representing an inline asm
block, memory constraint information is not preserved. This can cause
constraints to be broken when a memory offset is of the form:
offset + frame index
when the frame is resolved.
By propagating the constraints all the way to the backend, targets can
enforce memory operands of inline assembly to conform to their constraints.
For MIPSR6, some instructions had their offsets reduced to 9 bits from
16 bits such as ll/sc. This becomes problematic when using inline assembly
to perform atomic operations, as an offset can generated that is too big to
encode in the instruction.
Reviewers: dsanders, vkalintris
Differential Review: https://reviews.llvm.org/D21615
llvm-svn: 275786
Summary:
Make the target-specific flags in MachineMemOperand::Flags real, bona
fide enum values. This simplifies users, prevents various constants
from going out of sync, and avoids the false sense of security provided
by declaring static members in classes and then forgetting to define
them inside of cpp files.
Reviewers: MatzeB
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D22372
llvm-svn: 275451
Summary:
- Give it a shorter name (because we're going to refer to it often from
SelectionDAG and friends).
- Split the flags and alignment into separate variables.
- Specialize FlagsEnumTraits for it, so we can do bitwise ops on it
without losing type information.
- Make some enum values constants in MachineMemOperand instead.
MOMaxBits should not be a valid Flag.
- Simplify some of the bitwise ops for dealing with Flags.
Reviewers: chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D22281
llvm-svn: 275438
Summary:
Previously it would say we had an invariant load if any of the memory
operands were invariant. But the load should be invariant only if *all*
the memory operands are invariant.
No testcase because this has proven to be very difficult to tickle in
practice. As just one example, ARM's ldrd instruction, which loads 64
bits into two 32-bit regs, is theoretically affected by this. But when
it's produced, it loses its memoperands' invariance bits!
Reviewers: jfb
Subscribers: llvm-commits, aemerson
Differential Revision: http://reviews.llvm.org/D22318
llvm-svn: 275331
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
Summary:
While setting kill flags on instructions inside a BUNDLE, we bail out as soon
as we set kill flag on a register. But we are missing a check when all the
registers already have the correct kill flag set. We need to bail out in that
case as well.
This patch refactors the old code and simply makes use of the addRegisterKilled
function in MachineInstr.cpp in order to determine whether to set/remove kill
on an instruction.
Reviewers: apazos, t.p.northover, pete, MatzeB
Subscribers: MatzeB, davide, llvm-commits
Differential Revision: http://reviews.llvm.org/D17356
llvm-svn: 269092
Summary:
This intrinsic returns true if the current thread belongs to a live pixel
and false if it belongs to a pixel that we are executing only for derivative
computation. It will be used by Mesa to implement gl_HelperInvocation.
Note that for pixels that are killed during the shader, this implementation
also returns true, but it doesn't matter because those pixels are always
disabled in the EXEC mask.
This unearthed a corner case in the instruction verifier, which complained
about a v_cndmask 0, 1, exec, exec<imp-use> instruction. That's stupid but
correct code, so make the verifier accept it as such.
Reviewers: arsenm, tstellarAMD
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D19191
llvm-svn: 267102
MachineInstr.h and MachineInstrBuilder.h are very popular headers,
widely included across all LLVM backends. It turns out that there only a
handful of TUs that actually care about DI operands on MachineInstrs.
After this change, touching DebugInfoMetadata.h and rebuilding llc only
needs 112 actions instead of 542.
llvm-svn: 266351
This reverts commit fa36fcff16c7d4f78204d6296bf96c3558a4a672.
Causes the following Windows failure:
C:\Buildbot\Slave\llvm-clang-lld-x86_64-scei-ps4-windows10pro-fast\llvm.src\lib\CodeGen\MachineInstr.cpp(762):
error C2338: must be trivially copyable to memmove
llvm-svn: 264516
Summary: isPodLike is as close as we have for is_trivially_copyable.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18483
llvm-svn: 264515
Now the type API is always available, but when global-isel is not
built the implementation does nothing.
Note: The implementation free of ifdefs is WIP and tracked here in PR26576.
llvm-svn: 262873
Change MachineInstr API to prefer MachineInstr& over MachineInstr*
whenever the parameter is expected to be non-null. Slowly inching
toward being able to fix PR26753.
llvm-svn: 262149
Update APIs in MachineInstrBundle.h to take and return MachineInstr&
instead of MachineInstr* when the instruction cannot be null. Besides
being a nice cleanup, this is tacking toward a fix for PR26753.
llvm-svn: 262141
This fixes bugs in copy elimination code in llvm. It slightly changes the
semantics of clearRegisterKills(). This is appropriate because:
- Users in lib/CodeGen/MachineCopyPropagation.cpp and
lib/Target/AArch64RedundantCopyElimination.cpp and
lib/Target/SystemZ/SystemZElimCompare.cpp are incorrect without it
(see included testcase).
- All other users in llvm are unaffected (they pass TRI==nullptr)
- (Kill flags are optional anyway so removing too many shouldn't hurt.)
Differential Revision: http://reviews.llvm.org/D17554
llvm-svn: 261763
Delete MachineInstr::getIterator(), since the term "iterator" is
overloaded when talking about MachineInstr.
- Downcast to ilist_node in iplist::getNextNode() and getPrevNode() so
that ilist_node::getIterator() is still available.
- Add it back as MachineInstr::getInstrIterator(). This matches the
naming in MachineBasicBlock.
- Add MachineInstr::getBundleIterator(). This is explicitly called
"bundle" (not matching MachineBasicBlock) to disintinguish it clearly
from ilist_node::getIterator().
- Update all calls. Some of these I switched to `auto` to remove
boiler-plate, since the new name is clear about the type.
There was one call I updated that looked fishy, but it wasn't clear what
the right answer was. This was in X86FrameLowering::inlineStackProbe(),
added in r252578 in lib/Target/X86/X86FrameLowering.cpp. I opted to
leave the behaviour unchanged, but I'll reply to the original commit on
the list in a moment.
llvm-svn: 261504
We actually need that information only for generic instructions, therefore it
would be nice not to have to pay the extra memory consumption for all
instructions. Especially because a typed non-generic instruction does not make
sense.
The question is then, is it possible to have that information in a union or
something?
My initial thought was that we could have a derived class GenericMachineInstr
with additional information, but in practice it makes little to no sense since
generic MachineInstrs are likely turned into non-generic ones by just switching
the opcode. In other words, we don't want to go through the process of creating
a new, non-generic MachineInstr, object each time we do this switch. The memory
benefit probably is not worth the extra compile time.
Another option would be to keep the type of the MachineInstr in a side table.
This would induce an extra indirection though.
Anyway, I will file a PR to discuss about it and remember we need to come back
to it at some point.
llvm-svn: 260558
For now, generic virtual registers will not have a register class. We may want
to change that. For instance, if we want to use all the methods from
TargetRegisterInfo with generic virtual registers, we need to either have some
sort of generic register classes that do what we want, or teach those methods
how to deal with nullptr register class.
Although the latter seems easy enough to do, we may still want to differenciate
generic register classes from nullptr to catch cases where nullptr gets
introduced by a bug of some sort.
Anyway, I will file a PR to keep track of that.
llvm-svn: 260474
Only single and double FP immediates are correctly printed by
MachineInstr::print() during debug output. Half float type goes to
APFloat::convertToDouble() and hits assertion it is not a double
semantics. This diff prints half machine operands correctly.
This cannot currently be hit by any in-tree target.
Patch by Stanislav Mekhanoshin
llvm-svn: 259857
Move the logic from BranchFolding to use the shared infrastructure for merging MMOs introduced in 256909. This has the effect of making BranchFolding more capable.
In the process, fix a latent bug. The existing handling for merging didn't handle the case where one of the instructions being merged had overflowed and dropped MemRefs. This was a latent bug in the places the code was commoned from, but potentially reachable in BranchFolding.
Once this is in, we're left with a single place to consider implementing MMO unique-ing as proposed in http://reviews.llvm.org/D15230.
Differential Revision: http://reviews.llvm.org/D15913
llvm-svn: 256966