Patch by Rahul Chaudhry!
This change adds experimental support for SHT_RELR sections, proposed
here: https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
Pass '--pack-dyn-relocs=relr' to enable generation of SHT_RELR section
and DT_RELR, DT_RELRSZ, and DT_RELRENT dynamic tags.
Definitions for the new ELF section type and dynamic array tags, as well
as the encoding used in the new section are all under discussion and are
subject to change. Use with caution!
Pass '--use-android-relr-tags' with '--pack-dyn-relocs=relr' to use
SHT_ANDROID_RELR section type instead of SHT_RELR, as well as
DT_ANDROID_RELR* dynamic tags instead of DT_RELR*. The generated
section contents are identical.
'--pack-dyn-relocs=android+relr --use-android-relr-tags' enables both
'--pack-dyn-relocs=android' and '--pack-dyn-relocs=relr': lld will
encode the relative relocations in a SHT_ANDROID_RELR section, and pack
the rest of the dynamic relocations in a SHT_ANDROID_REL(A) section.
Differential Revision: https://reviews.llvm.org/D48247
llvm-svn: 336594
When the parsing of the functions happens inside of the declare target
region, we may erroneously mark local variables as declare target
thought they are not. This attribute can be applied only to global
variables.
llvm-svn: 336592
the cursor like a declaration
This change fixes a bug in libclang in which it tries to evaluate a statement
cursor as a declaration cursor, because that statement still has a pointer to
the declaration parent.
rdar://38888477
Differential Revision: https://reviews.llvm.org/D49051
llvm-svn: 336590
Summary:
This patch adds support for the atomicrmw instructions and the strong
cmpxchg instruction to the IRTranslator.
I've left out weak cmpxchg because LangRef.rst isn't entirely clear on what
difference it makes to the backend. As far as I can tell from the code, it
only matters to AtomicExpandPass which is run at the LLVM-IR level.
Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar, volkan, javed.absar
Reviewed By: qcolombet
Subscribers: kristof.beyls, javed.absar, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D40092
llvm-svn: 336589
Build error on Android; reported by and fix provided by (thanks) by Mauro Rossi <issor.oruam@gmail.com>
Fixes the following building error:
external/llvm/lib/Target/AMDGPU/SIInsertWaitcnts.cpp:1903:61:
error: comparison of integers of different signs:
'typename iterator_traits<__wrap_iter<MachineBasicBlock **> >::difference_type'
(aka 'int') and 'unsigned int' [-Werror,-Wsign-compare]
BlockWaitcntProcessedSet.end(), &MBB) < Count)) {
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ^ ~~~~~
1 error generated.
Differential Revision: https://reviews.llvm.org/D49089
llvm-svn: 336588
These won't work for the forseeable future. These aren't allowed
from OpenCL, but IPO optimizations can make them appear.
Also directly set the attributes on functions, regardless
of the linkage rather than cloning functions like before.
llvm-svn: 336587
Summary:
This adds a reverse transform for the instcombine canonicalizations
that were added in D47980, D47981.
As discussed later, that was worse at least for the code size,
and potentially for the performance, too.
https://rise4fun.com/Alive/Zmpl
Reviewers: craig.topper, RKSimon, spatel
Reviewed By: spatel
Subscribers: reames, llvm-commits
Differential Revision: https://reviews.llvm.org/D48768
llvm-svn: 336585
This is part of an ongoing attempt at making 512 bit vectors illegal in the X86 backend type legalizer due to CPU frequency penalties associated with wide vectors on Skylake Server CPUs. We want the loop vectorizer to be able to emit IR containing wide vectors as intermediate operations in vectorized code and allow these wide vectors to be legalized to 256 bits by the X86 backend even though we are targetting a CPU that supports 512 bit vectors. This is similar to what happens with an AVX2 CPU, the vectorizer can emit wide vectors and the backend will split them. We want this splitting behavior, but still be able to use new Skylake instructions that work on 256-bit vectors and support things like masking and gather/scatter.
Of course if the user uses explicit vector code in their source code we need to not split those operations. Especially if they have used any of the 512-bit vector intrinsics from immintrin.h. And we need to make it so that merely using the intrinsics produces the expected code in order to be backwards compatible.
To support this goal, this patch adds a new IR function attribute "min-legal-vector-width" that can indicate the need for a minimum vector width to be legal in the backend. We need to ensure this attribute is set to the largest vector width needed by any intrinsics from immintrin.h that the function uses. The inliner will be reponsible for merging this attribute when a function is inlined. We may also need a way to limit inlining in the future as well, but we can discuss that in the future.
To make things more complicated, there are two different ways intrinsics are implemented in immintrin.h. Either as an always_inline function containing calls to builtins(can be target specific or target independent) or vector extension code. Or as a macro wrapper around a taget specific builtin. I believe I've removed all cases where the macro was around a target independent builtin.
To support the always_inline function case this patch adds attribute((min_vector_width(128))) that can be used to tag these functions with their vector width. All x86 intrinsic functions that operate on vectors have been tagged with this attribute.
To support the macro case, all x86 specific builtins have also been tagged with the vector width that they require. Use of any builtin with this property will implicitly increase the min_vector_width of the function that calls it. I've done this as a new property in the attribute string for the builtin rather than basing it on the type string so that we can opt into it on a per builtin basis and avoid any impact to target independent builtins.
There will be future work to support vectors passed as function arguments and supporting inline assembly. And whatever else we can find that isn't covered by this patch.
Special thanks to Chandler who suggested this direction and reviewed a preview version of this patch. And thanks to Eric Christopher who has had many conversations with me about this issue.
Differential Revision: https://reviews.llvm.org/D48617
llvm-svn: 336583
Summary:
If we have an xvalue here, we will always hit the `err_typecheck_invalid_lvalue_addrof` error
in 'Sema::CheckAddressOfOperand' when trying to take the address of the result. This patch
uses the fallback code path where we store the result in a local variable instead when we hit
this case.
Fixes rdar://problem/40613277
Reviewers: jingham, vsk
Reviewed By: vsk
Subscribers: vsk, friss, lldb-commits
Differential Revision: https://reviews.llvm.org/D48303
llvm-svn: 336582
Add a number of builtins for __float128 Round To Odd.
This is the Clang portion of the builtins work.
Differential Revision: https://reviews.llvm.org/D47548
llvm-svn: 336579
Summary:
If the encoding is not specified in CIE augmentation string, then it
should be DW_EH_PE_absptr instead of DW_EH_PE_omit.
Reviewers: ruiu, MaskRay, plotfi, rafauler
Reviewed By: MaskRay
Subscribers: rafauler, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D49000
llvm-svn: 336577
This is similar to what is done for binops. I don't know if this would have helped us catch the bug fixed in r336566 earlier or not, but I figured it couldn't hurt.
llvm-svn: 336576
Summary:
Add bitcode compatibility test for 6.0. On top of the normal disassemble
test, also runs the verifier to make sure simple 6.0 bitcode can pass
the current IR verifier.
Reviewers: vsk
Reviewed By: vsk
Subscribers: dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49086
llvm-svn: 336574
Summary:
- use proper Error() decorator for error messages
- refactor ASan thread id and name reporting
Reviewers: eugenis
Subscribers: kubamracek, delcypher, #sanitizers, llvm-commits
Differential Revision: https://reviews.llvm.org/D49044
llvm-svn: 336573
This patch ports hasDedicatedExits, getUniqueExitBlocks and
getUniqueExitBlock in Loop to LoopBase so that they can be used
from other LoopBase sub-classes.
Reviewers: chandlerc, sanjoy, hfinkel, fhahn
Reviewed By: chandlerc
Differential Revision: https://reviews.llvm.org/D48817
llvm-svn: 336572
This patch introduces the logic implementing hierarchical scheduling.
First and foremost, hierarchical scheduling is off by default
To enable, use -DLIBOMP_USE_HIER_SCHED=On during CMake's configure stage.
This work is based off if the IWOMP paper:
"Workstealing and Nested Parallelism in SMP Systems"
Hierarchical scheduling is the layering of OpenMP schedules for different layers
of the memory hierarchy. One can have multiple layers between the threads and
the global iterations space. The threads will go up the hierarchy to grab
iterations, using possibly a different schedule & chunk for each layer.
[ Global iteration space (0-999) ]
(use static)
[ L1 | L1 | L1 | L1 ]
(use dynamic,1)
[ T0 T1 | T2 T3 | T4 T5 | T6 T7 ]
In the example shown above, there are 8 threads and 4 L1 caches begin targeted.
If the topology indicates that there are two threads per core, then two
consecutive threads will share the data of one L1 cache unit. This example
would have the iteration space (0-999) split statically across the four L1
caches (so the first L1 would get (0-249), the second would get (250-499), etc).
Then the threads will use a dynamic,1 schedule to grab iterations from the L1
cache units. There are currently four supported layers: L1, L2, L3, NUMA
OMP_SCHEDULE can now read a hierarchical schedule with this syntax:
OMP_SCHEDULE='EXPERIMENTAL LAYER,SCHED[,CHUNK][:LAYER,SCHED[,CHUNK]...]:SCHED,CHUNK
And OMP_SCHEDULE can still read the normal SCHED,CHUNK syntax from before
I've kept most of the hierarchical scheduling logic inside kmp_dispatch_hier.h
to try to keep it separate from the rest of the code.
Differential Revision: https://reviews.llvm.org/D47962
llvm-svn: 336571
Summary:
Currently Cuda plugin supports loading of the single image, though we
may have the executable with the several images, if it has target
regions inside of the dynamically loaded library. Patch allows to load
multiple images.
Reviewers: grokos
Subscribers: guansong, openmp-commits, kkwli0
Differential Revision: https://reviews.llvm.org/D49036
llvm-svn: 336569
This patch reorganizes the loop scheduling code in order to allow hierarchical
scheduling to use it more effectively. In particular, the goal of this patch
is to separate the algorithmic parts of the scheduling from the thread
logistics code.
Moves declarations & structures to kmp_dispatch.h for easier access in
other files. Extracts the algorithmic part of __kmp_dispatch_init() and
__kmp_dispatch_next() into __kmp_dispatch_init_algorithm() and
__kmp_dispatch_next_algorithm(). The thread bookkeeping logic is still kept in
__kmp_dispatch_init() and __kmp_dispatch_next(). This is done because the
hierarchical scheduler needs to access the scheduling logic without the
bookkeeping logic. To prepare for new pointer in dispatch_private_info_t, a
new flags variable is created which stores the ordered and nomerge flags instead
of them being in two separate variables. This will keep the
dispatch_private_info_t structure the same size.
Differential Revision: https://reviews.llvm.org/D47961
llvm-svn: 336568
In generic data-sharing mode we are allowed to not globalize local
variables that escape their declaration context iff they are declared
inside of the parallel region. We can do this because L2 parallel
regions are executed sequentially and, thus, we do not need to put
shared local variables in the global memory.
llvm-svn: 336567
Summary:
This patch fixes a problem with retrieving a function symbol by an address in a nested block. In the current implementation of ResolveSymbolContext function it retrieves a symbol with PDB_SymType::None and then checks if found symbol's tag equals to PDB_SymType::Function. So, if nested block's symbol was found, ResolveSymbolContext does not resolve a function.
It is very simple to reproduce this. For example, in the next program
```
int main() {
auto r = 0;
for (auto i = 1; i <= 10; i++) {
r += i & 1 + (i - 1) & 1 - 1;
}
return r;
}
```
if we will stop inside the cycle and will do a backtrace, the top element will be broken. But how we can test this? I thought to add an option to lldb-test to allow search a function by address, but the address may change when the compiler will be changed.
Patch by: Aleksandr Urakov
Reviewers: asmith, labath, zturner
Reviewed By: asmith, labath
Subscribers: stella.stamenova, llvm-commits
Differential Revision: https://reviews.llvm.org/D47939
llvm-svn: 336564
These are preliminary changes that attempt to use C++11 Atomics in the runtime.
We are expecting better portability with this change across architectures/OSes.
Here is the summary of the changes.
Most variables that need synchronization operation were converted to generic
atomic variables (std::atomic<T>). Variables that are updated with combined CAS
are packed into a single atomic variable, and partial read/write is done
through unpacking/packing
Patch by Hansang Bae
Differential Revision: https://reviews.llvm.org/D47903
llvm-svn: 336563
As discussed in D49047 / D48987, shift-by-undef produces poison,
so we can't use undef vector elements in that case..
Note that we need to extend this for poison-generating flags,
and there's a proposal to create poison from FMF in D47963,
llvm-svn: 336562
When implementing the DWARF accelerator tables in dsymutil I ran into an
assertion in the assembler. Debugging these kind of issues is a lot
easier when looking at the assembly instead of debugging the assembler
itself. Since it's only a matter of creating an AsmStreamer instead of a
MCObjectStreamer it made sense to turn this into a (hidden) dsymutil
feature.
Differential revision: https://reviews.llvm.org/D49079
llvm-svn: 336561
Summary:
To allow bitcode built by old compiler to pass the current verifer,
BitcodeReader needs to auto infer the correct runtime preemption from
linkage and visibility for GlobalValues.
Since llvm-6.0 bitcode already contains the new field but can be
incorrect in some cases, the attribute needs to be recomputed all the
time in BitcodeReader. This will make all the GVs has dso_local marked
correctly if read from bitcode, and it should still allow the verifier
to catch mistakes in optimization passes.
This should fix PR38009.
Reviewers: sfertile, vsk
Reviewed By: vsk
Subscribers: dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D49039
llvm-svn: 336560
This patch adds the target call back relaxTlsLdToLe to support TLS relaxation
from local dynamic to local exec model.
Differential Revision: https://reviews.llvm.org/D48293
llvm-svn: 336559
This is almost NFC, but there could be some case where the original
code had undefs in the constants (rather than just the shuffle mask),
and we'll use safe constants rather than undefs now.
The FIXME noted in foldShuffledBinop() is already visible in existing
tests, so correcting that is the next step.
llvm-svn: 336558
These patterns mapped (v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64:$src)))) to a MOVSD and an zeroing XOR. But the complexity of a pattern for (v2f64 (X86vzmovl (v2f64))) that selects MOVQ is artificially and hides this MOVSD pattern.
Weirder still, the SSE version of the pattern was explicitly blocked on SSE41, but yet we had copied it to AVX and AVX512.
llvm-svn: 336556
This patch introduces a VPValue in VPBlockBase to represent the condition
bit that is used as successor selector when a block has multiple successors.
This information wasn't necessary until now, when we are about to introduce
outer loop vectorization support in VPlan code gen.
Reviewers: fhahn, rengolin, mkuper, hfinkel, mssimpso
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D48814
llvm-svn: 336554
Summary: This is not enabled in the global-symbol-builder or dynamic index yet.
Reviewers: sammccall
Reviewed By: sammccall
Subscribers: ilya-biryukov, MaskRay, jkorous, cfe-commits
Differential Revision: https://reviews.llvm.org/D49028
llvm-svn: 336553
This patch adds support for the following instructions:
CNTB CNTH - Determine the number of active elements implied by
CNTW CNTD the named predicate constant, multiplied by an
immediate, e.g.
cnth x0, vl8, #16
CNTP - Count active predicate elements, e.g.
cntp x0, p0, p1.b
counts the number of active elements in p1, predicated
by p0, and stores the result in x0.
llvm-svn: 336552
Summary:
The library has graduated from clangd to llvm/Support.
This is a mechanical change to move to the new API and remove the old one.
Main API changes:
- namespace clang::clangd::json --> llvm::json
- json::Expr --> json::Value
- Expr::asString() etc --> Value::getAsString() etc
- unsigned longs need a cast (due to r336541 adding lossless integer support)
Reviewers: ilya-biryukov
Subscribers: mgorny, ioeric, MaskRay, jkorous, omtcyfz, cfe-commits
Differential Revision: https://reviews.llvm.org/D49077
llvm-svn: 336549
This patch completes support for shifts, which include:
- LSL - Logical Shift Left
- LSLR - Logical Shift Left, Reversed form
- LSR - Logical Shift Right
- LSRR - Logical Shift Right, Reversed form
- ASR - Arithmetic Shift Right
- ASRR - Arithmetic Shift Right, Reversed form
- ASRD - Arithmetic Shift Right for Divide
In the following variants:
- Predicated shift by immediate - ASR, LSL, LSR, ASRD
e.g.
asr z0.h, p0/m, z0.h, #1
(active lanes of z0 shifted by #1)
- Unpredicated shift by immediate - ASR, LSL*, LSR*
e.g.
asr z0.h, z1.h, #1
(all lanes of z1 shifted by #1, stored in z0)
- Predicated shift by vector - ASR, LSL*, LSR*
e.g.
asr z0.h, p0/m, z0.h, z1.h
(active lanes of z0 shifted by z1, stored in z0)
- Predicated shift by vector, reversed form - ASRR, LSLR, LSRR
e.g.
lslr z0.h, p0/m, z0.h, z1.h
(active lanes of z1 shifted by z0, stored in z0)
- Predicated shift left/right by wide vector - ASR, LSL, LSR
e.g.
lsl z0.h, p0/m, z0.h, z1.d
(active lanes of z0 shifted by wide elements of vector z1)
- Unpredicated shift left/right by wide vector - ASR, LSL, LSR
e.g.
lsl z0.h, z1.h, z2.d
(all lanes of z1 shifted by wide elements of z2, stored in z0)
*Variants added in previous patches.
llvm-svn: 336547
As noted in D48987, there are many different ways for this transform to go wrong.
In particular, the poison potential for shifts means we have to more careful with those ops.
I added tests to make that behavior visible for all of the different cases that I could find.
This is a partial fix. To make this review easier, I did not make changes for the single binop
pattern (handled in foldSelectShuffleWith1Binop()). I also left out some potential optimizations
noted with TODO comments. I'll follow-up once we're confident that things are correct here.
The goal is to correct all marked FIXME tests to either avoid the shuffle transform or do it safely.
Note that distinguishing when the shuffle mask contains undefs and using getBinOpIdentity() allows
for some improvements to div/rem patterns, so there are wins along with the missed opportunities
and fixes.
Differential Revision: https://reviews.llvm.org/D49047
llvm-svn: 336546